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Chapter 1

Introduction

This is a user manual for FORCESPRO, a commercial tool for generating highly customized
optimization solvers that can be deployed on all embedded computers. FORCESPRO is in-
tended to be used in situations were the same optimization problem has to be solved many
times, possibly in real-time, with varying data, i.e. there is sufficient time in the design stage
for generating a customized solution for the problem you want to solve.

Figure 1.1: Overview of FORCESPRO.

The code generation engine in FORCESPRO extracts the structure in your optimization prob-
lem and automatically synthesizes a custom optimization solver. The resulting C code can
only solve one optimization problem (with certain data changing), hence it is typically many
times more efficient and smaller code size than general-purpose optimization solvers. The
generated C code is also library-free and uses no dynamic memory allocation making it suit-
able for safe deployment on real-time autonomous systems.

This document will show you how to input your optimization problem description for code
generation in FORCESPRO. It is important to point out that FORCESPRO is not a tool for trans-
forming a problem specification into an optimization problem description. This responsibility
lies with the user.

1.1 Troubleshooting and support

FORCESPRO typically returns meaningful error messages when code generation errors oc-
cur due to invalid user inputs. When encountering other errors please consult our documen-
tation which is included in the FORCESPRO client and is also available on all FORCESPRO
servers. In case you cannot find a solution to your problem please submit a bug report to
support@embotech.com.

1
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Much effort has gone into making this interface easy to use. We welcome all your sugges-
tions for further improving the usability of the tool. Requests for special functionality for your
particular problem will also be considered by our development team. For all requests and
feedback please contact support@embotech.com.

1.2 Licensing

1.2.1 Commercial licensing

FORCESPRO licenses are available through a subscription model. There are four types of
licenses, as seen below:

• Engineer License: For generating FORCESPRO solvers. Charged per engineer com-
puter.

• Software Testing License (Sil/CI): For running FORCESPRO solvers on a desktop PC
or a server for simulation and (automated) testing. No physical system is controlled.
Charged per platform running the solver.

• Floating License: For running FORCESPRO solvers on servers or virtualised environ-
ments (such as Docker containers) without permanently mapping the license to a hard-
ware system. Charged per number of platforms able to concurrently run the solver. Cur-
rently available only on Linux x86/x86_64.

• Hardware Testing License (HiL/Field Testing): For controlling a physical system (i.e.
the target platform may also be an ECU or a rapid prototyping platform). Charged per
platform running the solver.

For more information regarding licensing please check on our website or contact
sales@embotech.com.

FORCESPRO licenses are available in variants S, M and L. For more information please check
the section License Variants

1.2.2 Academic licensing

Users at degree granting institutions can have access to the Engineer License version of
FORCESPRO free of charge provided they are not doing research for an industrial partner.
Software Testing and Hardware Testing licenses are also available at highly reduced rates.

1.3 Citing FORCESPRO

If you use FORCESPRO in published scientific work, please cite the following two papers:

@misc{FORCESPro,
Author = "Alexander Domahidi and Juan Jerez",
Howpublished = "Embotech AG, url=https://embotech.com/FORCES-Pro",
Title = "FORCES Professional",
Year = "2014--2019"

}

@article{FORCESNLP,
Author = "A. Zanelli and A. Domahidi and J. Jerez and M. Morari",
Title = "FORCES NLP: an efficient implementation of interior-point...

methods for multistage nonlinear nonconvex programs",

(continues on next page)

2 Chapter 1. Introduction
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(continued from previous page)

Journal = "International Journal of Control",
Year = "2017",
Pages = "1-17"
}

1.4 Product Life Cycle

A new major or minor version of FORCESPRO is released every quarter, with patch releases
in between. These new versions contain new functionalities and improvements in terms of
speed and robustness.

In order to be able to add novel features and improve existing ones at a high pace, FORCE-
SPRO uses continuous deployment as development policy. That also implies that we have
to ask users to update their clients if they want to benefit from the latest version of FORCE-
SPRO. In rare cases, this may also mean breaking backward compatibility (see also Section
Backward Compatibility) requiring users to either make the necessary changes in their own
code or to stick with an older version (and the corresponding server for code generation).

We guarantee that the codegen servers of any new version of FORCESPRO will be kept avail-
able for at least one year, starting from their respective release dates. Table 1.1 lists all release
dates since version 1.7.0 along with the actual or planned date for the corresponding code
generation server to go offline. In case you need an older version of FORCESPRO to be avail-
able beyond the scheduled offline date, please contact support@embotech.com so we can
work out a solution for you.

Table 1.1: Release Dates and Codegen Server Availabilities
FORCESPRO Version Release Date Actual or Planned Date Server goes Offline
1.7.0 2019-03-08 2019-10-01
1.8.0 2019-06-13 2020-04-01
1.9.0 2019-09-05 2020-05-15
1.9.1 2019-10-18 2020-10-01
2.0.0 2019-12-17 2020-12-15
3.0.0 2020-04-09 2021-03-15
3.0.1 2020-05-26 2021-05-31
3.1.0 2020-07-15 2021-07-15
4.0.0 2020-09-22 2021-09-30
4.1.0 2020-11-04 2021-11-15
4.1.1 2020-12-09 2021-12-15
4.2.0 2021-02-11 2022-02-15
4.2.1 2021-03-23 2022-03-31
4.3.0 2021-05-18 2022-05-31
4.3.1 2021-06-01 2022-05-31
4.4.0 2021-06-16 2022-06-30
5.0.0 2021-09-09 2022-09-30

1.5 Release Notes

1.5.1 New features in FORCESPRO 5.0.0

• Added improved symmetric indefinite linear solver and iterative refinement

• Added CasADi 3.5.5 support also to Python client and made it default AD tool in both
clients

Chapter 1. Introduction 3
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• Added support for Python 3.9

1.5.2 Improvements in FORCESPRO 5.0.0

• Added Y2F example for optimizing trajectory of quadrotor flight

• Added support for server connection via RestAPI

• Added option to export lower triangular BFGS

1.5.3 Bug Fixes in FORCESPRO 5.0.0

• Minor bugfixes in low-level and high-level interface solver interface

• Fix to handle scalar input arguments to interpolations in Python client

• Added fixes for size one parameters

• Improved adherence to C90 standard and MISRA C rules

• Bugfix concerning nonlinear inequalities detection in Python client

1.5.4 New features in FORCESPRO 4.4.0

• Implemented linear subsystem exploitation for explicit chainrule integrator RK4

• Implemented chainrule variant for integrator IRK2

• Added support for dSPACE SCALEXIO and dSPACE MicroLabBox

• Added functionality to use interpolations (such as splines) inside symbolic problem for-
mulations to both Matlab and Python client

1.5.5 Improvements in FORCESPRO 4.4.0

• Added Python variant of ForcesMin/ForcesMax, wrapped into new modelling sub-
package

1.5.6 Bug Fixes in FORCESPRO 4.4.0

• Fixed minor issues with return flags of SQP solver, e.g. in case of license error

1.5.7 Improvements in FORCESPRO 4.3.1

• Added support for server connection via proxy in Python client

1.5.8 Bug Fixes in FORCESPRO 4.3.1

• Fixed bug for code option threadSafeExpert causing two static variables

• Added missing code option nlp.max_num_threads to Python client

4 Chapter 1. Introduction
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1.5.9 New features in FORCESPRO 4.3.0

• Added support to formulate and solve multi-stage nonlinear MPC problems with The
MathWorks Model Predictive Control Toolbox (TM)

• Added code option threadSafeExpert to give users full control over memory allocation
when running multiple instances of an PDIP_NLP or PDIP solver

• Added support for CasADi 3.5.5 in the MATLAB client

1.5.10 Improvements in FORCESPRO 4.3.0

• Made CasADi 3.5.1 default AD tool also in the MATLAB client

• Added support for single (stacked) solution vector for solvers PDIP_NLP and SQP_NLP

• Added more thorough check for identical stages in MATLAB client along with new code
option nlp.strictCheckDistinctStages

• Let FORCESversion also return planned offline date of client version

• Added new client examples demonstrating how to formulate problems comprising soft
and rate constraints using the high-level interface

1.5.11 Bug Fixes in FORCESPRO 4.3.0

• Fixed freeing of DLLs in Python Client

• Fixed issue with code option noVariableElimination is used along with linear solver
normal_eqs in MATLAB client

1.5.12 Improvements in FORCESPRO 4.2.1

• Added msgpack support for MacOS

• Added separate optlevel options for host and target

• Improved robustness of client connection to the codegen server

• Added support for custom parameters in Python client

1.5.13 Bug Fixes in FORCESPRO 4.2.1

• Bugfix in QP solver caused by code optimization for source in src_target folder

• Fixed bug in ADMM method

1.5.14 New features in FORCESPRO 4.2.0

• Added support for dumping of problem formulation from C

• Added support for NI cRIO platforms

• Created Simulink Fingerprinters for platforms with Simulink Model deployment

• Added Speedgoat (for MATLAB R2020b and later) example for The MathWorks Model
Predictive Control Toolbox (TM)

• Added support for single precision callbacks, i.e. mixed-precision NLP solution

Chapter 1. Introduction 5
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1.5.15 Improvements in FORCESPRO 4.2.0

• Changed to new server communication in MATLAB client for improved safety and con-
nection stability

• Reenabled chainrule integrators as default integrator when using continuous dynamics,
and fixed performance issues

• Extended Speedgoat support to more MATLAB/Simulink Real-Time releases

1.5.16 Improvements in FORCESPRO 4.1.1

• Improved hashing of sparse linear algebra routines

• Fixed MATLAB network communication, replaced deprecated SOAP methods with new
ones, enabled with legacyNetworkConnections = 0

• Parallel BFGS updates with compact_code = 0 (default)

• Prevent MATLAB client to overwrite user script if solver has same filename

• Throw proper exceptions when block structure is not detected in sparse parametric
equalities in low-level interface

• Parallel callbacks evaluation with compact_code = 1 and parallel >= 1

• Reverted to legacy integrators in default behaviour

• Added code generation compatibility with MATLAB 2016a

• Various fixes and updates in the API of the Python dump tool

1.5.17 Bug Fixes in FORCESPRO 4.1.1

• Fixed FORCESconfigureClient to work on all OS

• Fixed codegen failure with compact_code related to nonlinear inequalities

• Disabled compact_code when initial equality constraint not eliminated (D0)

• Restored functionality to collect variable declarations at beginning of CasADi callbacks
(only if c90 code option is set)

• Bug fix for copy of scaler parameters with compact_code = 1

1.5.18 New features in FORCESPRO 4.1.0

• Code-generated explicit integrators and sensitivity with chain rule and variational differ-
ential equation

• Python dump tool and compatible MATLAB dump tool

• Option for adding a single external callback instead of adding all callbacks externally

• Added solver and webcompiler support for speedgoat (for MATLAB R2020b and later)

1.5.19 Improvements in FORCESPRO 4.1.0

• Scalar parameters are not treated as arrays anymore for compatibility with MATLAB
Coder. To enable the previous behaviour set code option size_one_param_as_array
= 1
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• Separated CasADi and Symbolic math toolbox callbacks to have more control over dy-
namics callbacks.

• Introduce code option separateCasadiFiles which when set to 1 ensures old callback
file structure (separate model files).

• Replaced old obstacle avoidance client examples for python and MATLAB by new inter-
active ones

• Added path tracking example for the python and the MATLAB client

1.5.20 Bug Fixes in FORCESPRO 4.1.0

• Fixed Simulink and standalone Python interface using scalar parameters

• Fixed some openmp issues and added number of threads as runtime parameter

1.5.21 New features in FORCESPRO 4.0.0

• Support for FORCESPRO NLP solvers (PDIP_NLP and SQP_NLP) in The MathWorks Model
Predictive Control Toolbox (TM)

• Solver timeout option for PDIP_NLP, SQP_NLP and PDIP

• New code option exportBFGS which enables export of BFGS diagonal on every stage

1.5.22 Improvements in FORCESPRO 4.0.0

• Server now returns interface/definitions.py file independent of whether the re-
quest was sent from the MATLAB or Python client

• Added support for symbolic step size in Python integrators

• Added connection tester for the FORCESPRO server

• Added new parameter type Adense to allow copy of dense A matrix to sparse internally.
Should be used within Model Predictive Control Toolbox plugin only!

• New option nlp.parametricBFGSinit for initializing BFGS matrix as a run-time param-
eter

1.5.23 Bug Fixes in FORCESPRO 4.0.0

• Fixed export of root relaxation solution in MINLP solver

• Fixed number of outputs in ADMM method

• Added fix for floattype 'int' and 'short'

• Fixed issue occuring in Python client when all initial or all final variables are fixed

• Fixed reading issue in csmatio library

1.5.24 New features in FORCESPRO 3.1.0

• High-level Python interface for NLP solvers
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1.5.25 Improvements in FORCESPRO 3.1.0

• Vectorized outer product on one-stage dense QP problems in double precision on Intel
platforms

• Refactoring of clients and server to enable standalone release

• Check for vectorization instructions in Python client, refactored C code in DLL

• Made variables in generated interface static

• Improved efficiency of CasADi file postprocessing in MATLAB client

• Export of dual variables in solver PDIP_NLP

• Fixed updateClient scripts to delete old data

• Made FORCES_NLP return dumped formulation even if an error occurs during execu-
tion

• Allow to specify directory when saving dumped problem formulation/instance

1.5.26 Bug Fixes in FORCESPRO 3.1.0

• Fix in detection of selection matrix

• Fix in CasADi for linux systems

• Fixed bug with stacked parametric bounds

• Updated accessing of Stage properties to work with obfuscation

• fix issue with variable number of equality constraints in convex problems

• Fixed issue in CasADi code generation

• Fixed internal rounding heuristic in MINLP solver

1.5.27 Improvements in FORCESPRO 3.0.1

• New nlp.stack_parambounds for stacking parametric bounds over stages with solvers
PDIP_NLP and SQP_NLP

• Support for MicroAutoBox III

1.5.28 Bug Fixes in FORCESPRO 3.0.1

• Bug fix in fraction to boundary rule

• Bug fixes for specific compilation settings

• Fixed download of CasADi for macos

• Fixed bug in model files declarations in casadi2forces with solver SQP_NLP

1.5.29 New features in FORCESPRO 3.0.0

• Real-time sequential quadratic programming solver via code option SQP_NLP

• Support for MathWorks Symbolic Math Toolbox and CasADi 3.5.1 (with limitations)

• Code option nlp.compact_code for generating small-size code on long horizon prob-
lems
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• Support for license files

• Option for dumping problem formulation and data for support

1.5.30 Improvements in FORCESPRO 3.0.0

• Revamped licensing system

• Removed object files from dowloaded solver package

1.5.31 Bug Fixes in FORCESPRO 3.0.0

• Fixed bug with number of stages and integer guess in MINLP solver

1.5.32 New features in FORCESPRO 2.0.0

• Introduced support for FORCESPRO QP solvers in the The MathWorks Model Predictive
Control Toolbox (TM)

• Created new examples for the MPC Toolbox plugin

1.5.33 Improvements in FORCESPRO 2.0.0

• Made tolerances on equalities, inequalities, stationarity and complementarity run-time
parameters in NLP solver

• Automatic disabling of vectorization when some matrix parameters are sparse

1.5.34 Bug Fixes in FORCESPRO 2.0.0

• Fixed linking issue with avx on linux host

• Fixed mex interface to not copy empty parameters

• Fixed bug with MINLP solver exitflag on infeasible problems

1.5.35 New features in FORCESPRO 1.9.1

• Adapted FORCESPRO license check to portal database

• Adapted floating license database checks to portal database

• Made linear algebra vectorization stage dependent

1.5.36 Improvements in FORCESPRO 1.9.1

• Fixed numerical bug in NLP line-search
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1.5.37 New features in FORCESPRO 1.9.0

• New code-generation options for AVX and NEON vectorization

• New code generation options and parameters to provide an integer guess to the MINLP
solver

• New runtime parameter parallelStrategy for MINLP solver

• Created dedicated Floating License web Server

1.5.38 Improvements in FORCESPRO 1.9.0

• Changed floating license communication to http

• Enabled user-defined outputs in MINLP solver

• Added code option c90 to add extra C definitions in CasADi model files

• Added openmp flag to nvidia webcompiler

• Added support for Python 3.6

• Updated usysid files in client

1.5.39 Bug Fixes in FORCESPRO 1.9.0

• Fixed bug with constraints handling in code-generation

• Fixed memory bug in MINLP solver

• Fixed bug in parameters indexing in client. Parameters are now indexed with a fixed
number of digits depending on the horizon length. 1 digit below 10, 2 digits between 10
and 100 excluded,. . .

• Fixed bug with stacked parameter ineq.p.b

1.5.40 New features in FORCESPRO 1.8.0

• Mixed-integer nonlinear solver with parallelizable search and other customization fea-
tures

• Support for the Speedgoat platform

• Support for the Integrity ARM platform

• Support for Docker containers

• Updated newParam API to allow for parameters stacked over stages

1.5.41 Improvements in FORCESPRO 1.8.0

• Improved performance of compactSparse feature

• Added custom headers to specify platforms

1.5.42 Bug Fixes in FORCESPRO 1.8.0

• Fixed numerical bug in v1.7.0
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1.5.43 New features in FORCESPRO 1.7.0

• MISRA 2012 compliance, no mandatory or required violations in generated C code

• Added support for dSPACE MicroAutoBox II

• Added support for ARM Cortex A72 platforms

• Added support for MinGW as a mex compiler

• New code optioncompactSparse for smaller code and faster compilation of sparse prob-
lems

• Added threadSafeStorageoption, enabling creation of thread-safe solvers (requires C11
compilers)

1.5.44 Improvements in FORCESPRO 1.7.0

• Improved codegen speed for sparse problems

• Improved web compilation to reduce http timeouts

• Secure client-server communication under custom embotech domain

• Improved portability of functions used

• Added display of license and solver expiration as well as generation id on header files

• Updated FORCEScleanup to include all solver related files

• Improved messages and warnings returned from FORCESPRO client

• Now passing iteration number to function evaluations

• Added new error code for invalid parameter initial values

1.5.45 Bug Fixes in FORCESPRO 1.7.0

• Changed default server when default server file is missing

• Always check for default server files when choosing server to use

• Corrected the logic for updating the best solution found so far (NLP)

• Fixed sparse linear algebra routine names

1.6 Version history of manual

The version history of this document is presented in Version history of FORCESPRO manual.
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Table 1.2: Version history of FORCESPRO manual
Version Revision Date Reason for change
1 0 2017-04-10 Initial version
2 0 2018-09-27 Overhaul of outdated manual
2 1 2018-11-19 Add dSPACE code deployment
3 0 2019-02-20 Updated manual for v1.7.0
4 0 2019-06-04 Updated manual for v1.8.0
4 1 2019-08-29 Updated manual for v1.9.0
5 0 2019-10-10 Updated manual for v1.9.1
6 0 2019-12-09 Updated manual for v2.0.0
7 0 2020-04-07 Updated manual for v3.0.0
7 1 2020-05-26 Updated manual for v3.0.1
7 2 2020-07-13 Updated manual for v3.1.0
8 0 2020-09-21 Updated manual for v4.0.0
8 1 2020-10-30 Updated manual for v4.1.0
8 2 2020-12-07 Updated manual for v4.1.1
8 3 2021-02-09 Updated manual for v4.2.0
8 4 2021-03-18 Updated manual for v4.2.1
8 5 2021-05-11 Updated manual for v4.3.0
8 6 2021-05-31 Updated manual for v4.3.1
8 7 2021-06-15 Updated manual for v4.4.0
9 0 2021-09-08 Updated manual for v5.0.0
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Chapter 2

License Variants

Each problem type requires a dedicated solver method in order to be solved quickly and
efficiently. FORCESPRO is available in different variants in order to adapt to each user’s needs.
When receiving a FORCESPRO license on the portal(https://my.embotech.com) a user can
select one of the available variants which is best suited for the problem to be solved. At any
point, a user can decide to upgrade to a larger variant in order to include additional solver
methods in their available toolset for FORCESPRO.

The available variants are (smaller variants are included in larger ones):

• S (Variant S)

• M (Variant M)

• L (Variant L)

2.1 Variant Summary

In the tables below you can find a summary of the components provided with each variant
of FORCESPRO.

Table 2.1: Problem types supported for each variant
S M L

Problem Type
LP X X X
QP X X X
QCQP X X X
BI-QP X X
NLP (SQP) X X
NLP (IP) X
MINLP X
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Table 2.2: Interfaces provided for each variant
S M L

Interface
MATLAB Low-Level X* X X
Python Low-Level X* X X
MATLAB Y2F X X X
MathWorks MPC Toolbox™ (Linear MPC) X X X
MATLAB High-Level X** X
Python High-Level X** X
MathWorks MPC Toolbox™ (Nonlinear
MPC)

X** X

* No Binary Constraints
** Only with SQP method

2.2 Variant S

This variant is used for generation of convex solvers. This variant should be used for solving:

• LP problems

• QP problems

• QCQP problems

This variant is delivered with the following interfaces:

• MATLAB Low-level Interface (Low-level interface)

• Python Low-level Interface (Low-level interface)

• MATLAB Y2F Interface (Y2F Interface)

• MathWorks Model Predictive Control Toolbox™ - Linear MPC (MathWorks Linear MPC
Plugin)

2.3 Variant M

This variant further enables the generation of SQP solvers for NLPs and the solution of Binary-
Integer QPs. This variant should be used for solving:

• Binary-Integer QP problems (Binary constraints)

• NLP Problems using SQP methods (Sequential quadratic programming algorithm)

This variant is delivered with the following interfaces:

• MATLAB High-level Interface (High-level Interface) with codeoptions.solvemethod =
‘SQP_NLP’;

• Python High-level Interface (High-level Interface) with codeoptions.solvemethod =
‘SQP_NLP’

• MathWorks Model Predictive Control Toolbox™ - Nonlinear MPC (MathWorks Nonlinear
MPC Plugin) with options.SolverType = ‘SQP’;
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2.4 Variant L

This variant provides the full experience of FORCESPRO and enables all its features. This vari-
ant further enables the solution of:

• NLP problems with Interior-Point Methods and SQP

• MINLP problems (Mixed-integer nonlinear solver)

This variant is delivered with the following interfaces:

• MATLAB High-level Interface (High-level Interface) with full support

• Python High-level Interface (High-level Interface) with full support

• MathWorks Model Predictive Control Toolbox™ - Nonlinear MPC (MathWorks Nonlinear
MPC Plugin) with full support
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Chapter 3

Installation

3.1 Obtaining FORCESPRO

FORCESPRO is a client-server code generation system. The user describes the optimization
problem using the client software, which communicates with the server for code generation
(and compilation if applicable). The client software is the same for all users, independent of
their license type.

In order to obtain FORCESPRO, follow the steps below:

1. Inquire a license from https://www.embotech.com/products/forcespro/licensing/ or by
directly contacting licenses@embotech.com.

2. After receiving a license, if registered on the portal, the FORCESPRO client can be down-
loaded from the portal after assigning an Engineering Node. For more information see
https://my.embotech.com/readme. Otherwise the FORCESPRO client will be sent to you
via email.

3. Unzip the downloaded client into a convenient folder.

Note: The FORCESPRO client contains several inner ZIP-files for the Python client named
forcesproXY.zip. These do not need to be extracted!

3.2 Installation of the MATLAB Client

Add the path of the downloaded folder FORCES_PRO to the MATLAB path by using the com-
mand addpath DIRNAME, e.g. by typing:

addpath /home/user/FORCES_PRO

on your MATLAB command prompt. Alternatively, you can add the path of the FORCES_PRO
folder via the graphical user interface of MATLAB as seen in Figure 3.1.

Figure 3.1: Adding the FORCES_PRO folder to the MATLAB path.
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Having added the root folder of the FORCESPRO MATLAB client to the MATLAB path one
configures the client to the specific MATLAB version by running

FORCESconfigureClient;

in the MATLAB command window. After the FORCESPRO MATLAB client has been config-
ured one can save the MATLAB path in order to always have access to FORCESPRO when
initiating a new MATLAB session. Alternatively one perform the above 2 steps whenever ini-
tiating a new MATLAB session.

3.2.1 System requirements

FORCESPRO is supported on Windows, macOS and the different Linux distributions.

For the MATLAB and Simulink interfaces, 32 or 64 bit MATLAB 2012b (or higher) is required.
Older versions might work but have not been tested. A MEX compatible C compiler is also
required. A list of compilers that are supported by MATLAB can be found in https://www.
mathworks.com/support/sysreq/previous_releases.html.

Run:

mex -setup

to configure your C compiler in MATLAB.

3.2.2 Keeping FORCESPRO up to date

FORCESPRO is actively developed and client modifications are frequent. Whenever your
client version is not synchronized with the server version, you will receive a code generation
error notifying you that your client is out of date.

To update your client simply type:

updateClient

on your MATLAB command prompt. updateClient without any arguments uses the default
embotech server to grab the client, and updates all corresponding client files. The command:

updateClient(URL)

overrides the default server selection and uses the server located at URL instead.

Alternatively, the FORCESPRO client may also be updated through Python, see Keeping
FORCESPRO up to date.

3.3 Installation of the Python Client

FORCESPRO offers a Python interface that enables user to formulate a optimization problem,
generating a solver for it through communication with the FORCESPRO server, and calling
the generated solver directly from Python. It is contained within the FORCESPRO client pack-
age together with the MATLAB Client, which can be obtained with a valid license as described
in Obtaining FORCESPRO.
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3.3.1 Quick Guide

This section describes the most common commands needed to go from a blank system to
generating and executing the first solver for different operating systems. Before doing so,
you may want to double-check the section Requirements below, in particular with respect to
supported versions of Python and external packages.

In the following, we assume you have obtained the FORCESPRO client as described in Ob-
taining FORCESPRO, and unzipped its files into the directory /path/to/forces/pro on Unix plat-
forms or C:\path\to\forces\pro on Windows. The following installation instructions slightly dif-
fer for the operating systems supported, so please refer to the appropriate section.

Windows (PowerShell)

C:\PythonXY\Scripts\pip.exe install numpy scipy requests suds-jurko casadi==3.5.5
→˓matplotlib
$env:PYTHONPATH="C:\path\to\forces\pro"
C:\PythonXY\python.exe
→˓C:\path\to\forces\pro\examples\Python\HighLevelInterface\RobotArmRTI\robot_sim.py

Linux Ubuntu

pip3 install numpy scipy requests suds-jurko casadi==3.5.5 matplotlib
sudo apt-get install gcc libomp-dev
export PYTHONPATH="/path/to/forces/pro":$PYTHONPATH
python3 /path/to/forces/pro/examples/Python/HighLevelInterface/RobotArmRTI/robot_
→˓sim.py

Mac

xcode-select --install
brew install python3 libomp
python3 -m pip install numpy scipy requests suds-jurko casadi==3.5.5 matplotlib
export PYTHONPATH="/path/to/forces/pro":$PYTHONPATH
python3 /path/to/forces/pro/examples/Python/HighLevelInterface/RobotArmRTI/robot_
→˓sim.py

This assumes you have the Homebrew package manager already installed. If not, run the
following before any of the above instructions:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install.sh)"

3.3.2 Requirements

The Python client has been tested with the follwing configurations:

Python

A Python installation is required. Note that only compiled Python bytecode for the versions
listed below is currently shipped with the client:

• Python 2.7 (low-level convex problems only)
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• Python 3.6

• Python 3.7

• Python 3.8

• Python 3.9

If you require a different version, please contact us at forces@embotech.com.

For purposes of readibility, for Windows, we will assume you have installed the respective
Python version into C:\PythonXY (where X is the major version number and Y the minor ver-
sion number) throughout the rest of this documentation. On Linux and Mac, we assume you
have Python 3 available in your PATH as python3, and Python 2.7 as python.

Python Packages

For any Python version, the following packages from the Python package index (PyPI) must
be installed in the PYTHONPATH:

• numpy (Tested with version 1.18.3)

• scipy (Tested with version 1.4.1)

• casadi (Version 3.5.1 or 3.5.5 required; only for high-level interface)

• matplotlib (Required only for plotting in the example code)

• requests (Required for server connections)

Additionally, Python 2.7 requires the following packages:

• suds

Additionally, Python versions 3.x require the following packages:

• suds-jurko

All of these packages can be conveniently installed through the command-line by running
the following command from a terminal (Linux, Mac):

pip3 install numpy scipy casadi==3.5.5 matplotlib requests suds-jurko

Or, on Windows:

C:\PythonXX\Scripts\pip.exe install numpy scipy casadi==3.5.5 matplotlib requests
→˓suds-jurko

Available Compiler

Nonlinear symbolic problem formulations are translated into C code by the FORCES PRO
client. In order to generate solvers for these kinds of problems, a C compiler and linker must
thus be present on the host machine. The following compilers have been tested and are
supported by the FORCESPRO Python client:

• On Windows: Microsoft Visual Studio C Compiler 2019 and 2015 (Can be obtained by
downloading the Microsoft Visual Studio Community IDE)

• On Linux: GNU Compiler Collection (GCC), tested with version 9.3.0

• On Mac: Apple clang version 11.0.3 (Can be obtained by installing the XCode command-
line tools)

Additionally, on Linux, the following package must be installed if you wish to generate solvers
making use of parallel execution (options.parallel = True) or mixed-integer nonlinear problem
(MINLP) solvers:
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sudo apt-get install libomp-dev

On Mac, for parallel solver generation and MINL-problems, the following package must be
installed through Homebrew:

brew install libomp

3.3.3 Adding the FORCESPRO Python Client to your Python path

Once the FORCESPRO client has been downloaded and the requirements have been in-
stalled as outlined above, you will need to tell the Python interpreter where to look for the
forcespro and forcespro.nlp packages which implement the FORCESPRO client interface in
Python. Doing so will allow you to write import forcespro or import forcespro.nlp in your
scripts to import the FORCESPRO functionality. To make the FORCESPRO client available
this way, you have several options:

Option A: Setting the PYTHONPATH environment variable

Add the FORCESPRO client directory to your PYTHONPATH before calling any scripts that
require FORCESPRO from the command line. In a Windows PowerShell this is done by:

$env:PYTHONPATH="C:\path\to\forces\pro"

In Windows cmd.exe:

set PYTHONPATH=C:\path\to\forces\pro

On Unix (Linux and Mac):

export PYTHONPATH=/path/to/forces/pro

After doing so, you can call any script that requires FORCESPRO, and the script may include
import forcespo or import forcespro.nlp statements without needing to know where your
actual FORCESPRO client directory is.

Option B: Setting sys.path inside Python scripts

Add the FORCESPRO client directory to sys.path before importing:

import sys
sys.path.insert(0, '/path/to/forces/pro') # On Unix
sys.path.insert(0, 'C:\\path\\to\\forces\\pro') # On Windows, note the doubly-
→˓escaped backslashes
import forcespro
import forcespro.nlp

Note that this reduces the portability of any scripts using FORCESPRO, as it hard-codes the
location of FORCESPRO inside the script.

3.3.4 Keeping FORCESPRO up to date

In order to obtain the latest version of the FORCESPRO client, a Python script for automatic
upgrading is available.
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In order to use it, navigate to the FORCESPRO client directory and execute the update-
Client.py script in Python.

$ cd /path/to/forces/pro
$ python updateClient.py

Alternatively, the FORCESPRO client can also be updated through MATLAB, see Keeping
FORCESPRO up to date.
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Chapter 4

Backward Compatibility

FORCESPRO uses continuous deployment as development policy, which may cause also mi-
nor new versions not to behave identical to previous ones. This chapter summarizes code-
generation options that either recently changed default behaviour or were introduced to al-
low restoring behaviour of a previous FORCESPRO version.

4.1 Determining Client Version

For determining the current version of your client, you may invoke the following command:

Matlab

Python

VER = FORCESversion();

# not yet supported for Python client

The code-generation servers of FORCESPRO only remain available for a certain period of time
(but for at least one year after release, see Product Life Cycle). The date when the codegen
server of the current client version is planned to go offline can be retrieved as second output
argument of the same command:

Matlab

Python

[VER, OFFLINEDATE] = FORCESversion();

# not yet supported for Python client

4.2 Changes from Version 5.0.0

From version 5.0.0, FORCESPRO uses CasADi v3.5.5 as default AD tool for both Matlab and
Python client. The following code-generation option can be used for reverting to previous
FORCESPRO behaviour (since v4.3.0) using CasADi v3.5.1:

• codeoptions.nlp.ad_tool = 'casadi-3.5.1'

From version 5.0.0, FORCESPRO uses an improved implementation of the linear solver as
default whenever nlp.linear_solver is set to 'symm_indefinite'. The following code-
generation option can be used for reverting to previous FORCESPRO behaviour:
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• codeoptions.nlp.linear_solver = 'symm_indefinite_legacy'

From version 5.0.0, FORCESPRO uses RestAPI for server communications. To revert to previ-
ous communication methods, the following options can be used (see MATLAB network com-
munications/Python network communications):

Matlab

Python

codeoptions.server_connection = ForcesWeb.ServerConnections.WSDL
codeoptions.server_connection = ForcesWeb.ServerConnections.WSDL_legacy

codeoptions.server_connection = 'WSDL'

4.3 Changes from Version 4.3.0

From version 4.3.0, FORCESPRO uses CasADi v3.5.1 as default AD tool for both Matlab and
Python client. The following code-generation option can be used for reverting to previous
FORCESPRO behaviour using CasADi v2.4.2:

• codeoptions.nlp.ad_tool = 'casadi-2.4.2'

4.4 Changes from Version 4.2.0

From version 4.2.0, the following code-generation options can be used for reverting to pre-
vious FORCESPRO behaviours:

• codeoptions.legacyNetworkConnections = 1. From version 4.2.0, a new com-
munication method is used to connect to the codegen service for safety and sta-
bility reasons. Use this option to use the legacy method of communication (see
sec_network_communications).

• codeoptions.platform = 'Speedgoat-Legacy-x86'. From version 4.2.0, use this
option for Mobile Speedgoat platforms on earlier versions of MATLAB (earlier than
R2018b).

From version 4.2.0, the option codeoptions.platform = 'Speedgoat-x86' supports
MATLAB versions from R2018b till R2020a, while option codeoptions.platform =
'Speedgoat-QNX' supports MATLAB R2020b and later.

4.5 Changes from Version 4.1.0

From version 4.1.0, the following code-generation options can be used for reverting to pre-
vious FORCESPRO behaviours:

• codeoptions.separateCasadiFiles = 1. From version 4.1.0, the old _model files are
all gathered in a single _casadi file. Use this option to enable the old behaviour, i.e.
splitted model files.

• codeoptions.size_one_param_as_array = 1. From version 4.1.0, when using the
PDIP_NLP method only, all parameters of size one are treated as scalars by default in
order to be compatible with the Matlab coder. This option enables users to revert to the
previous behaviour, i.e. scalar parameters as arrays of size one.
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Chapter 5

Y2F Interface

YALMIP is a high-level modeling language for optimization in MATLAB. It is very convenient
to use for modeling various optimization problems, including convex quadratic programs,
for example. YALMIP allows you to write self-documenting code that reads very much like a
mathematical description of the optimization model.

To combine the computational efficiency of FORCESPRO with the ease-of-use of YALMIP,
we have created the interface Y2F. Y2F very efficiently detects the inherent structure in the
optimization problem, and uses the FORCESPRO backend to generate efficient code for
it. All you need to do is to replace YALMIP’s optimizer function, which pre-builds the op-
timization problem such that subsequent evaluations become very inexpensive, by Y2F’s
optimizerFORCES function, which is fully API-compatible with optimizer.

This interface is provided with all variants of FORCESPRO, starting with Variant S.

You can read more about the concept of YALMIP’s optimizer here.

Important: The Y2F interface supports convex decision making problems, with or without
binary variables.

5.1 Installing Y2F

Y2F is included in the FORCESPRO client. If optimizerFORCES is not found on your MATLAB
path, you need to add the FORCES_PRO/Y2F/Y2F directory to it, e.g. by typing:

addpath /home/user/FORCES_PRO/Y2F/Y2F

on your MATLAB command prompt.

Of course, you also need a working installation of YALMIP, which you can download from
https://yalmip.github.io/download/.

5.2 Generating a solver

A YALMIP model consists of a constraint object, which we name const and an objective func-
tion obj. You can create an optimizer object that has most of the work YALMIP needs to do
before calling a solver (called canonicalization) already saved. The only parts missing are the
parameters of the problem, which you can specify when calling optimizer:
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P = optimizer(Con, Obj, Options, Parameters, WantedVariables); % YALMIP syntax

With Y2F, you can have the same syntax but creating a FORCESPRO solver:

P = optimizerFORCES(Con, Obj, Options, Parameters, WantedVariables,
→˓[ParameterNames], [OutputNames]);

where Options is a FORCESPRO codeoptions struct (see the Solver Options section for more
information). The two last arguments are optional cell arrays of strings specifying the names
of the parameters and the wanted variables. These will be used for naming e.g. the in- and
output ports of the generated Simulink block.

5.3 Calling the solver

There are several ways of calling the generated solver:

1. Using the optimizerFORCES object, which again is API compatible with YALMIP’s
optimizer object:

[wantedVariableValues, exitflag, info = P{Parameters}; % YALMIP syntax

2. Using the generated Matlab (MEX) interface (type help solvername at the Matlab com-
mand prompt for more information):

problem.ParameterName1 = value1; problem.ParameterName2 = value2;
[output, exitflag, info] = solvername(problem);
wantedVariable = output.outputName1;

3. Via the generated Simulink block (see interfaces folder of the generated code).

5.4 Solver info

5.4.1 Exitflags

One should always check whether the solver has exited without an error before using the
solution. Possible values of exitflag are presented in Table 5.1.
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Table 5.1: Exitflag values
Exitflag Description
1 Optimal solution found to the requested accuracy.
2 (for branch-and-bound) A feasible point has been identified for which the ob-

jective value is no more than codeoptions.mip.mipgap*100 per cent worse
than the global optimum.
(for convex solver) Solver timeout has been reached.

0 Timeout – maximum number of iterations or maximum computation time of
codeoptions.mip.timeout (only branch-and-bound) reached. The returned
solution is the best one found so far.

-1 (only branch-and-bound) Infeasible problem (problems solving the root relax-
ation to desired accuracy).

-2 (only branch-and-bound) Out of memory – cannot fit branch and bound nodes
into pre-allocated memory.

-7 The convex solver could not proceed due to stalled line search. The prob-
lem might be infeasible. Otherwise, please submit a bug report to sup-
port@embotech.com including all data necessary to reproduce the problem.
You can also run FORCESdiagnostics on your problem to check for most com-
mon errors in the formulation.

-10 The convex solver could not proceed due to an internal error. The prob-
lem might be infeasible. Otherwise, please submit a bug report to sup-
port@embotech.com including all data necessary to reproduce the problem.
You can also run FORCESdiagnostics on your problem to check for most com-
mon errors in the formulation.

-100 License error. If you have generated code with a simulation license, it will run
only on the machine from which the code has been generated. In some cases,
e.g. when connected to a VPN network, the FORCESPRO license checker pro-
duces a false negative. Re-run the code generation script in this case to make
sure licensing information is correctly set.

5.4.2 Additional diagnostics

The solver returns additional information to the optimizer in the info struct. Some of the
fields are described in Table 5.2. Depending on the method used, there will also be other
fields describing the quality of the returned result.

Table 5.2: Info values
Info Description
info.it Number of iterations. In branch-and-bound mode this is the number

of convex problems solved in total.
info.solvetime Total computation time in seconds.
info.pobj Value of the objective function.
info.it2opt (only branch-and-bound) Number of convex problems solved for find-

ing the optimal solution. Note that often the optimal solution is found
early in the search, but in order to certify (sub-)optimality, all branches
have to be explored.

5.5 Performance

A performance measurement for the interface when compared to other solvers called via
YALMIP and to the same problem formulated via the low-level interface of FORCESPRO (2
states, 1 input, box constraints, varying horizon) is presented in Figure 5.1. In this example, the
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code generated directly from YALMIP is about 10 times faster than other solvers, and only a
factor 2 slower than the code generated with the low-level interface of FORCESPRO.

Figure 5.1: Performance comparison of the Y2F interface of FORCESPRO.

5.6 Examples

• Y2F interface: Basic example: Learn how to formulate problems in YALMIP easily, and
then use the Y2F interface to generate code with FORCESPRO.

• Y2F interface: Trajectory Optimization for Quadrotor Flight: A more complex example
optimizing the trajectory of a quadrotor within safe flight corridors.
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Chapter 6

MathWorks Linear MPC Plugin

As a result of a long-term collaboration, MathWorks Inc. and Embotech AG developed a MAT-
LAB® plugin for FORCESPRO. Users are now able to use the FORCESPRO solver in MATLAB®
and Simulink® from within the MATLAB®Model Predictive Control Toolbox. The plugin lever-
ages the powerful design capabilities of the Model Predictive Control Toolbox™and the com-
putational performance of FORCESPRO. With FORCESPRO 2.0, toolbox users can now easily
define challenging control problems and solve long-horizon MPC problems more efficiently.

Model Predictive Control Toolbox™ provides functions, an app, and Simulink® blocks for de-
signing and simulating model predictive controllers. The toolbox enables users to readily
specify plant and disturbance models, horizons, constraints, and weights. User-friendly con-
trol design capabilities of Model Predictive Control Toolbox™, combined with the powerful
numerical algorithms of FORCESPRO, enables code deployment of the FORCESPRO solver
on real-time hardware from within MATLAB® and Simulink®, in addition to the QP solvers
shipped by MathWorks. The new FORCESPRO interface comes with various features such as
Simulink blocks that can generate code runnable on embedded targets such as dSpace. The
parameters of the MPC algorithm, such as plant and disturbance model, prediction horizon,
constraints and move-blocking strategy can be specified directly. The toolbox enables users
to run closed-loop simulations and evaluation of controller performance. User-friendly MPC
design capabilities are combined with the powerful numerical algorithms of FORCESPRO.
This combination of the Model Predictive Control Toolbox™ and FORCESPRO enables code
deployment on real-time hardware. The generated code is highly optimized for fast compu-
tations and low memory footprint.

This interface is provided with all variants of FORCESPRO, starting with Variant S. It is com-
patible with MATLAB R2019b, 2020a and 2020b.

The plugin mainly consists of the three following MATLAB commands which are described
in details in this chapter:

• mpcToForces for generating a FORCESPRO solver from an MPC object designed by the
Model Predictive Control Toolbox

• mpcmoveForces for calling the generated solver on a specific MPC problem instance

• mpcCustomSolver for using the FORCESPRO dense QP solver as a custom solver

An auxiliary file is also exposed to the users for generating different solvers options, namely
mpcToForcesOptions.

The following LTI MPC features are supported:

• Continuous and discrete time plant models

• Move blocking

• Measured disturbances

• Unmeasured disturbances
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• Disturbance and noise models

• Uniform or time-varying weights on outputs, manipulated variables, manipulated vari-
ables rates and a global slack variable

• Uniform or time-varying bounds on outputs, manipulated variables and manipulated
variables rates

• Soft constraints

• Signal previewing on reference and measured disturbances

• Scale factors

• Nominal values

• Online updates of weights and constraints

• Built-in and custom state estimators

Currently, convex quadratic programs are supported by the MATLAB plugin. Extensions to
adaptive and linear time-varying are under development. The current limitations of the plu-
gin are the following:

• Mixed input-output constraints are not covered

• Offdiagonal terms on the hessian of the objective cannot be implemented

• Unconstrained problems are not supported

• No single-precision solvers, only double precision currently

• No suboptimal solutions

6.1 Different types of solvers

The plugin converts an MPC object (weights, bounds, horizons, prediction model) into a
quadratic program (QP) formulated via the FORCESPRO API. One key design decision is to
choose the decision variables in the quadratic program. There are two classic choices and
they lead to two different formulations:

• Dense QP, where only the manipulated variables 𝑀𝑉 or ∆𝑀𝑉 are decision variables. In
this case, the hessian and linear constraints matrices are stored as dense matrices.

• Sparse QP, where 𝑀𝑉 , ∆𝑀𝑉 , the outputs 𝑂𝑉 and the states 𝑋 are decision variables. In
this case, all matrices have a block sparse structure as in Low-level interface.

Typically, a dense QP has fewer optimization variables, zero equality constraints and many
inequality constraints. Although the sparse QP is generally much larger than the dense QP
its structure can be efficiently exploited to reduce the solve times. Besides, the dense formu-
lation has an inherent flaw, which is that the condition number increases with the horizon
length, especially when the plant states have large contributions to the plant inputs and out-
puts. Thus, the best solution is to allow users to switch to the sparse formulation, which pre-
vents numerical blow-ups when the plant is unstable. Nevertheless, the dense formulation
can be beneficial in terms of solve time when there is an important amount of move-blocking.

6.2 Generating a QP solver from an MPC object

Given an MPC object created by the mpc command, users can generate a QP solver tailored
to their specific problem via the following command:
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% mpcobj is the output of mpc(...)
% options is the output of mpcToForcesOptions(...)

[coredata, statedata, onlinedata] = mpcToForces(mpcobj, options);

Two types of QP solvers can be generated via mpcToForces: a sparse solver that corresponds
to a multi-stage formulation as in Low-level interface and a dense solver that corresponds to
a one-stage QP with inequality constraints only.

The API of mpcToForces is described in more details in the tables below. The mpcToForces
command expects an MPC object mpcobj and a structure options generated by
mpcToForcesOptions as inputs.

Table 6.1: mpcToForces inputs
Input Description
mpcobj LTI MPC controller designed by Model Predictive Control Toolbox
options Object that provides solver generation options.

The outputs of mpcToForces consist of three structures coredata, statedata and onlinedata.
The FORCESPRO server generates two types of solvers:

• customForcesSparseQP when the option ‘sparse’ is set. An m file named ‘custom-
ForcesSparseQP.m‘ with the corresponding mex interface as well as the solver libraries
and header in the ‘customForcesSparseQP‘ folder. In this particular case (sparse), the
name of the solver can be set by users.

• customForcesDenseQP when the option ‘dense’ is set. An m file named ‘customForces-
DenseQP.m‘ with the corresponding mex interface as well as the solver libraries and
header in the ‘customForcesDenseQP‘ folder. In this particular case (dense), the solver
name cannot be changed by users.
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Table 6.2: mpcToForces outputs
Output Type Description
coredata Structure Stores constant Store constant data needed to construct

quadratic progam at run-time
statedata Structure Represents prediction model states and last optimal MV.

The index 𝑘 stands for the current simulation time.
It contains 4 fields:
When built-in state estimation is used:
Plant is the estimated plant state 𝑥𝑝[𝑘|𝑘 − 1]
Disturbance is the estimated disturbance states 𝑥𝑑[𝑘|𝑘− 1]
Noise is the estimated measurement noise states 𝑥𝑛[𝑘|𝑘−1]
LastMove is the optimal manipulated variables at the pre-
vious sample time
In this case, users should not manually change any field at
run-time.
When custom state estimation is used:
Plant is the estimated plant state 𝑥𝑝[𝑘|𝑘]
Disturbance is the estimated disturbance states 𝑥𝑑[𝑘|𝑘]
Noise is the estimated noise states 𝑥𝑛[𝑘|𝑘]
LastMove is the optimal manipulated variables at the pre-
vious solve
In this case, user should manually update Plant, Distur-
bance (if used), Noise (if used) fields at run-time but leave
LastMove alone.

onlinedata Structure Represent online signals
It contains up to three fields:
signals, a structure containing following fields:
ref (references of Output Variables)
mvTarget (references of Manipulated Variables)
md (when Measured Disturbance is present)
ym (when using the built-in estimator)
externalMV (when UseExternalMV is true in the options ob-
ject)
weights, a structure containing the following fields:
y (when UseOnlineWeightOV is enabled)
u (when UseOnlineWeightMV is enabled)
du (when UseOnlineWeightMVRate is enabled)
ecr (when UseOnlineWeightECR is enabled)
constraints, a structure containing the following fields:
vmin (when UseOnlineConstraintOVMin is enabled)
vmax (when UseOnlineConstraintOVMax is enabled)
umin (when UseOnlineConstraintMVMin)
umax (when UseOnlineConstraintMVMax)
dumin (when UseOnlineConstraintMVRateMin)
dumax (when UseOnlineConstraintMVRateMax)

In order to provide the code-generation options to mpcToForces, the user needs to run the
command mpcToForcesOptions with one of the following two arguments as input:

• “dense” for generating the options of a one-stage dense QP solvers

• “sparse” for generating the options a multi-stage QP solver.

The structures provided by the mpcToForcesOptions command have the following MPC re-
lated fields in common between the “dense” and “sparse” case:

• SkipSolverGeneration. When set to True, only structures are returned. If set to False, a
solver mex interface is generated and the structures are returned. Default value is False.
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• UseOnlineWeightOV. When set to True, it allows Output Variables weights to vary at run
time. Default is False.

• UseOnlineWeightMV. When set to True, it allows Manipulated Variables weights to vary
at run time. Default is False.

• UseOnlineWeightMVRate. When set to True, it allows weights on the Manipulated Vari-
ables rates to vary at run time. Default is False.

• UseOnlineWeightECR. When set to True, it allows weights on the ECR to change at run
time. Default is False.

• UseOnlineConstraintOVMax. When set to True, it allows updating the upper bounds on
Output Variables at run time. Default is False.

• UseOnlineConstraintOVMin. When set to True, it allows updating the lower bounds on
Output Variables at run time. Default is False.

• UseOnlineConstraintMVMax. When set to True, it allows updating the upper bounds on
Manipulated Variables at run time. Default is False.

• UseOnlineConstraintMVMin. When set to True, it allows updating the lower bounds on
Manipulated Variables at run time. Default is False.

• UseExternalMV. When set to True, the actual Manipulated Variable applied to the plant
at time 𝑘 − 1 is provided as output. Default is False.

• UseMVTarget. When set to True, an MV reference signal is provided via the onlinedata
structure. In this case, MV weights should be positive for proper tracking. When false,
the MV reference is the nominal value by default and MV weights should be zero to avoid
unexpected behaviour. Default is False.

Both the “dense” and “sparse” options structures have the following solver related fields in
common:

• ForcesServer is the FORCESPRO server url. Default is forces.embotech.com.

• ForcesMaxIteration is the maximum number of iterations in a FORCESPRO solver. De-
fault value is 50.

• ForcesPrintLevel is the logging level of the FORCESPRO solver. If equal to 0, there is no
output. If equal to 1, a summary line is printed after each solve. If equal to 2, a summary
line is printed at every iteration. Default value is 0.

• ForcesInitMethod is the initialization strategy used for the FORCESPRO interior point al-
gorithm. If equal to 0, the solver is cold-started. If equal to 1, a centered start is computed.
Default value is 1.

• ForcesMu0 is the initial barrier parameter. It must be finite and positive. Its default value
is equal to 10. A small value close to 0.1 generally leads to faster convergence but may be
less reliable.

• ForcesTolerance is the tolerance on the infinity norm of the residuals of the inequality
constraints. It must be positive and finite. Its default value is 10−6.

• ForcesTargetPlatform for choosing a target platform to deploy the solver. Currently,
dSpace, Speedgoat and BeagleBone-Blue are supported.

In the “sparse” solver case, there are four more fields:

• SolverName for customuzing the solver name.

• UseOnlineConstraintMVRateMax for setting MVRate upper bounds.

• UseOnlineConstraintMVRateMin for setting MVRate lower bounds.

• UseOneSlackVariablePerStep to enable one slack variable per prediction step.
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6.3 Solving a QP from MPC online data

Once a QP solver has been generated it can be used to solve online MPC problems via the
MATLAB command mpcmoveForces as follows

% the coredata, statedata and onlinedata structures are outputs of
→˓mpcToForces

[mv,statedata,info] = mpcmoveForces(coredata,statedata,onlinedata);

The outputs of the mpcmoveForces command are described below. In the table below 𝑛𝑚
denotes the number of manipulated variables, 𝑛𝑥 stands for the state dimension of the sys-
tem implemented in the MPC object, 𝑝 is the prediction horizon and 𝑘 is the current solve
time instant.

Table 6.3: mpcmoveForces outputs
Output Type Description
mv Vector of size nm Optimal manipulated variables at current solve time

instant
statedata Structure Initialized by mpcToForces
info Structure Information about the FORCESPRO solve

Uopt is a 𝑝 × 𝑛𝑚 matrix for the optimal manipulated
variables over the prediction horizon 𝑘 to 𝑘 + 𝑝− 1
Yopt is a 𝑝×𝑛𝑦 matrix for the optimal output variables
over the prediction horizon 𝑘 + 1 to 𝑘 + 𝑝
Xopt is a 𝑝 × 𝑛𝑥 matrix for the optimal state variables
over the prediction horizon 𝑘 + 1 to 𝑘 + 𝑝
Slack is a 𝑝× 1 vector of slack variables
Exitflag is the FORCESPRO solve exit flag. If it is
equal to 1, an optimal solution has been found. If it
is equal to 0, the maximum number of solver itera-
tions has been reached. A negative flag means that
the solver failed to find a feasible solution.
Iterations is the number of solver iterations upon
convergence or failure
Cost is the cost returned by the solver

6.4 Using the FORCESPRO MPC Simulink block

Both the FORCESPRO sparse and dense solvers can be used inside Simulink. The dense QP
formulation is usable from the shipped Simulink MPC controller block directly. For this, the
following steps are needed:

• Generate a custom dense FORCESPRO solver

options = mpcToForcesOptions('dense');
mpcToForces(mpcobj, options);

• Set the following settings in the MPC object

mpcobj.Optimizer.CustomSolver = true;
mpcobj.Optimizer.CustomSolverCodeGen = true;

The FORCESPRO sparse QP solver is also available via the Model Predictive Control Toolbox
in Simulink. A dedicated block has been implemented for this purpose. All features of the
MATLAB plugin are available through this Simulink block, namely measured disturbances,
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external manipulated variables, references for manipulated variables, custom state estima-
tion as well as online weights and constraints. Configuring the block is done via the user
interface shown in Figure 6.1 below. Currently only the sparse QP solver can be used via the
Simulink API.

Figure 6.1: FORCESPRO MPC block configuration window

In order to run a simulation using the FORCESPRO Simulink block, a solver first needs to be
generated via the following code for instance:

%% Generate FORCESPRO sparse QP solver
options = mpcToForcesOptions('sparse');
% For this example we need to specify that online weights on the outputs,
% the input rates and the ECR slacks are used
options.UseOnlineWeightOV = true;
options.UseOnlineWeightMVRate = true;
options.UseOnlineWeightECR = true;
[coredata, statedata, onlinedata] = mpcToForces(mpcobj, options);

The structures coredata and statedata needed by the FORCESPRO solver are then provided
to the Simulink block via the window shown in Figure 6.1.

• coredata is the variable name of the core data structure generated by mpcToForces in
the base workspace.
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• initial state data is the variable name of the state data structure generated by mpcTo-
Forces in the base workspace. The user is expected to populate this structure with initial
states of the plant and disturbances.

• md checkbox should be selected if MD channels exist in the MPC object.

• x[k|k] checkbox needs to be selected for using a custom state estimator.

• Optional outputs provide more information. It is recommended to monitor the
qp.status port to check whether the MPC block produces a feasible solution.

The integration of the FORCESPRO MPC block in a Simulink model is shown in Figure 6.2
below.

Figure 6.2: Simulink model illustrating the integration of the FORCESPRO MPC block

The Simulink model can be run either by clicking on the Run button in Simulink or from MAT-
LAB using the sim command.

% Start simulation.
mdl = 'forcesmpc_onlinetuning';
open_system(mdl); % Open Simulink(R) Model
sim(mdl); % Start Simulation

Finally, the FORCESPRO MPC block is available via the Library browser once the user has
updated his client to the latest version of FORCES, as shown in Figure 6.3 below.

Figure 6.3: FORCESPRO MPC block in the library browser
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6.5 Deploy to dSpace MicroAutoBox II using the FORCE-
SPRO MPC Simulink block

The FORCESPRO sparse solvers can be used inside Simulink to deploy to dSpace MicroAuto-
Box II. All features of the MATLAB plugin are available through this Simulink block, namely
measured disturbances, external manipulated variables, references for manipulated vari-
ables, custom state estimation as well as online weights and constraints. Configuring the
block is done via the user interface shown in Figure 6.4 below.

Figure 6.4: FORCESPRO MPC block configuration

1) In order to run an MPC simulation in dSPACE using the FORCESPRO block, a solver first
needs to be generated via the following code:

%% Generate FORCESPRO sparse QP solver
options = mpcToForcesOptions('sparse');
% For this example we need to specify that online weights on the outputs,
% the input rates and the ECR slacks are used

(continues on next page)
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(continued from previous page)

options.UseOnlineWeightOV = true;
options.UseOnlineWeightMVRate = true;
options.UseOnlineWeightECR = true;
options.ForcesTargetPlatform = 'dSPACE-MABII';

[coredata, statedata, onlinedata] = mpcToForces(mpcobj, options);

2) Note that the option ForcesTargetPlatform needs to be specified. The structures core-
data and statedata needed by the FORCESPRO solver are then provided to the Simulink
block via the window shown in Figure 6.4. The integration of the FORCESPRO MPC block
in a Simulink model is shown in Figure 6.5 below.

Figure 6.5: FORCESPRO MPC block integration in a Simulink model

3) When creating the Simulink Model, in the Configurations, in the “Code Generation” tab,
set the options (see Figure 6.6 below):

• System target file: rti1401.tlc

• Language: C

• Generate makefile: On

• Template makefile: rti1401.tmf

• Make command: make_rti

4) The Simulink model can be used for Code Generation from MATLAB in the usual way.

% Start Code Generation.
mdl = 'forcesmpc_onlinetuning_dSpace_MicroAutoBoxII';
open_system(mdl); % Open Simulink(R) Model
load_system(mdl); % Load Simulink(R) Model
rtwbuild(mdl); % Start Code Generation

5) After code generation the dspace compiler (Microtec PowerPC) generated files to use to
run your model on the MicroAutoBox II (see Figure 6.7).

6) Open dSpace Control Desk and select create new project (see Figure 6.8).

7) Name the project and the experiment (see Figure 6.9 and Figure 6.10).

8) Select the platform to which you will deploy the generated executable (see Figure 6.11).

9) Import the variable description fileforcesmpc_onlinetuning_dSpace_MicroAutoBoxII.
sdf in order to have access to the model variables and see the results of the execution
(see Figure 6.12 and Figure 6.13).

10) Click Finish to create the project (see Figure 6.14).

11) On the project layout select the tab Variables and on the
forcesmpc_onlinetuning_dSpace_MicroAutoBoxII category expand Model Root
(see Figure 6.15).
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Figure 6.6: Configure Code Generation for dSPACE MicroAutoBox II

12) Select FORCES MPC (Sparse QP) and Drag & Drop all the output variables together to
the Layout. In the opened menu select Time Plotter (see Figure 6.16).

13) Drag & Drop the output variables again and now choose Display (see Figure 6.17).

14) To see all the plots concurrently right-click on the left of the Y-axis and select
YAxes-view> Horizontal stacked (see Figure 6.18).

15) Select the Platforms/Devices tab. Right-Click on your platform and
select Real-Time Application> Load. Choose the executable file
forcesmpc_onlinetuning_dSpace_MicroAutoBoxII.ppc (see Figure 6.19 and Fig-
ure 6.20).

16) Select Go Online and Start Measuring to see the results. (see Figure 6.21 and Figure
6.22).

6.6 Examples

The plugin comes with several examples to demonstrate its functionalities and flexibility.

You can find the MATLAB code of this example to try them out for yourself in the examples/
matlab/mpc-toolbox-plugin/linearModels folder that comes with your client.

The packaged examples are the following ones:

• forcesmpc_cstr.m is a linear time-invariant (LTI) MPC example with unmeasured out-
puts. It also shows how to use the MATLAB Coder for generating and running mpcmove-
Forces as a mex interface, which results in lower simulation times.
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Figure 6.7: The generated files from the Simulink Code Generation

40 Chapter 6. MathWorks Linear MPC Plugin



FORCESPRO User Manual

Figure 6.8: Start a new project

Figure 6.9: Name your project
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Figure 6.10: Name your experiment

Figure 6.11: Select the MicroAutoBox platform
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Figure 6.12: Import the variable description file

Figure 6.13: Select the sdf file with the variables description
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Figure 6.14: Click Finish to create the project

Figure 6.15: Find the model root in the variables tab
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Figure 6.16: Add the variables as plots

Figure 6.17: Add the variables as displays

Chapter 6. MathWorks Linear MPC Plugin 45



FORCESPRO User Manual

Figure 6.18: Select to show all the signals on the same plot with their own Y-axes

Figure 6.19: Load the application on the dSPACE MicroAutoBox II

Figure 6.20: Select the executable to run the experiment
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Figure 6.21: Buttons Go Online and Start Measuring to receive execution results

Figure 6.22: Plots and results from experiment on dSPACE MicroAutoBox II

• forcesmpc_targets.m is an LTI MPC example with a reference on one manipulated vari-
ables

• forcesmpc_preview.m is an LTI MPC example with previewing on the output reference
and the measured disturbance

• forcesmpc_motor.m is an LTI MPC example with state and input constraints

• forcesmpc_miso.m is an LTI MPC example with one measured output, one manipulated
variable, one measured disturbance, and one unmeasured disturbance

• forcesmpc_simplelti.m demonstrates a simple LTI MPC designed

• forcesmpc_linearize.m is an example of linear MPC around an operating point of a
nonlinear system.

• forcesmpc_customqp.m shows how to use the FORCESPRO dense QP solver as a cus-
tom solver in an MPC object

• forcesmpc_run_onlinetuning.m demonstrates how to run the MPC Simulink block.

• forcesmpc_run_onlinetuning_dSpace_MicroAutoBoxII.m demonstrates how to
generate code for dSpace MicroAutoBox II using the MPC Simulink block.

The forcesmpc_linearize.m example is described in more details below. First, the linearized
model and the operating point are loaded from a MAT file.

%% Load plant model linearized at its nominal operating point (x0, u0, y0)
load('nomConditionsLinearize.mat');

An MPC controller object is then created with a prediction horizon of length 𝑝 = 20, a control
horizon 𝑚 = 3 and a sampling period 𝑇𝑠 = 0.1 seconds as explained here.
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%% Design MPC Controller
% Create an MPC controller object with a specified sample time |Ts|,
% prediction horizon |p|, and control horizon |m|.
Ts = 0.1;
p = 20;
m = 3;
mpcobj = mpc(plant,Ts,p,m);

Nominal values need to be set in the MPC object.

% Set the nominal values in the controller.
mpcobj.Model.Nominal = struct('X',x0,'U',u0,'Y',y0);

Constraints are set on the manipulated variables and an output reference signal is provided.

% Set the manipulated variable constraint.
mpcobj.MV.Max = 0.2;

% Specify the reference value for the output signal.
r0 = 1.5*y0;

From the MPC object and a structure of options, a FORCESPRO solver can be generated.

% Create options structure for the FORCESPRO sparse QP solver
options = mpcToForcesOptions();
% Generates the FORCESPRO QP solver
[coredata, statedata, onlinedata] = mpcToForces(mpcobj, options);

Once a reference signal has been constructed, the simulation can be run using
mpcmoveForces.

for t = 1:Tf
% A measurement noise is simulated
Y(:, t) = dPlant.C * (X(:, t) - x0) + dPlant.D * (U(:, t) - u0) + y0 +

→˓0.01 * randn;
% Prepare inputs of mpcmoveForces
onlinedata.signals.ref = r(t:min(t+mpcobj.PredictionHorizon-1,Tf),:);
onlinedata.signals.ym = Y(:, t);
% Call FORCESPRO solver
[mv, statedata, info] = mpcmoveForces(coredata, statedata, onlinedata);
if info.ExitFlag < 0

warning('Internal problem in FORCESPRO solver');
end
U(:, t) = mv;
X(:, t+1) = dPlant.A * (X(:, t) - x0) + dPlant.B * (U(:, t) - u0) + x0;

end

The resulting input and output signals are shown in Figure Figure 6.23 and Figure Figure 6.24
respectively.
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Figure 6.23: Manipulated variable computed by the FORCESPRO plugin.

Figure 6.24: Output variable computed by the FORCESPRO plugin.
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Chapter 7

MathWorks Nonlinear MPC Plugin

7.1 Introduction

As a result of a long-term collaboration, MathWorks Inc. and Embotech AG have extended the
Model Predictive Control Toolbox™with a plugin for the FORCESPRO nonlinear solvers. Users
are now able to use the FORCESPRO nonlinear interior-point (IP) and sequential quadratic
programming (SQP) solvers in MATLAB® and Simulink® from within the MATLAB® Model
Predictive Control Toolbox within the nonlinear MPC API. This plugin leverages the power-
ful design capabilities of the Model Predictive Control Toolbox™ and the computational per-
formance of FORCESPRO. FORCESPRO extends the Model Predictive Control Toolbox with
code-generated IP and SQP solvers that are not based on finite-difference derivatives compu-
tation, resulting in faster convergence. Thanks to FORCESPRO, the nonlinear API now comes
with two classes of nonlinear solvers compatible with code generation that can be deployed
to various real-time targets.

Generating a FORCESPRO solver throught the Model Predictive Control Toolbox plugin is
done by first generating either a nlmpcMultistage object (see here) or a nlmpc object (see
here). The nlmpcMultistage formulation of a nonlinear MPC problem offers maximum flex-
ibility and customizability while also ensures optimal performance. Meanwhile, the nlmpc
formulation of a nonlinear MPC problem is very easy and requires a minimal amount of cod-
ing to get started. The different aspects of generating these different objects will be covered
in details below.

Depending on the object chosen, the FORCESPRO nonlinear MPC plugin consists of two API
methods:

• nlmpc

– nlmpcToForces generates a FORCESPRO nonlinear solver from a nonlinear MPC
(nlmpc) object designed by the Model Predictive Control Toolbox

– nlmpcmoveForces calls the generated solver to calculate optimal control actions

• nlmpcMultistage

– nlmpcMultistageToForces generates a FORCESPRO nonlinear solver from a non-
linear MPC multistage (nlmpcMultistage) object designed by the Model Predictive
Control Toolbox

– nlmpcmoveForcesMultistage calls the generated solver to calculate optimal con-
trol actions

The nonlinear plugin also comes with Simulink® libraries that enable users to run the FORCE-
SPRO solvers from within their Simulink® models. The generation of FORCESPRO nonlinear
solvers from nlmpc objects is supported from MATLAB R2020a while generation from nlm-
pcMultistage objects is supported from MATLAB R2021a.
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This interface is provided with Variant L and partially with Variant M of FORCESPRO.

Important: Note that when generating a FORCESPRO solver using a nlmpcMultistage ob-
ject there is the following caveat concerning declaration of model functions: For any stage
cost, equality and inequality constraint function, if it is defined differently than any other
stage, it must be specified in a separate MATLAB function. In other words, do not define
different cost and constraint terms in a single function using a switch yard based on stage
number. Instead, use different functions, one for each unique definition.

For example, do not use a single cost function and assign it to every stage like showed in the
following code-snippet:

% THIS WILL NOT WORK CORRECTLY!
function cost = LaneFollowingCostFcn(stage,x,u,dmv,para)
Wx = [0; 0; 0.05; 0; 3; 0];
Wdmv = [0.1; 0.2];
ref = [0; 0; para(2); 0; 0; 0];
p = para(1)
if stage==1
cost = (Wdmv.*dmv)'*(Wdmv.*dmv);
elseif stage==(p+1)

cost = (Wx.*(x-ref))'*(Wx.*(x-ref));
else

cost = (Wx.*(x-ref))'*(Wx.*(x-ref)) + (Wdmv.*dmv)'*(Wdmv.*dmv);
end

Instead, split it into three functions and assign them to 1, 2 to 𝑝 and 𝑝+ 1 respectively.

7.2 Defining a nonlinear model

In order to call the FORCESPRO code generation, both a nlmpc object as well as a
nlmpcMultistage object need to be built from a Model. The process is essentially the same
as the one described here. However one should note that the FORCESPRO code genera-
tion ignores the jacobian functions that may be provided in Jacobian.StateFcn and Jaco-
bian.OutputFcn, since these will be automatically generated by the automatic differentia-
tion tool CasADi. Moreover, the following requirements on the fields Model.StateFcn and
Model.OutputFcn need to be fulfilled for the plugin to work seamlessly:

• they must be the name of a function file, not an anonymous functions

• they must be compatible with MATLAB code generation

• they must follow CasADi coding conventions. Most importantly, the state
derivative dxdt has to be built explicitly, as shown below.

dxdt = [expression; expression; ...]

As a word of caution, the following code snippet will result in an undesired behaviour from
CasADI.

dxdt = x; % Do not write this, CasADI takes it as reference !
dxdt(1,1) = a1*x(1) + a2*x(2) + b1*u(2);
dxdt(2,1) = a3*x(1) + a4*x(2) + b2*u(2);
dxdt(3,1) = x(2)*x(1) + x(4);
dxdt(4,1) = (1/tau)*(-x(4) + u(1));
dxdt(5,1) = x(1) + x(3)*x(6);
dxdt(6,1) = x(2) - 0*x(3);
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FORCESPRO calls the model functions from its own objects, which follow an assigment by
reference convention, hence the assignement dxdt = x is made by reference. This implies that
updating dxdt also changes x, which builds the wrong symbolic dynamics.

For nlmpc objects, if the model contains a parameter, it must be a single vector parameter. In
other words, users need to set nlobj.Model.NumberOfParameters = 1 and at run-time write
onlinedata.Parameter = value where value is a column vector.

7.3 Generating an NLP solver

7.3.1 Using an “nlmpc” object

When generating a FORCESPRO solver using annlmpcobject, the main difference compared
to the existing nonlinear MPC from The MathWorks based on the fmincon solver from the
Optimization Toolbox is a code generation step that takes the nonlinear MPC object as argu-
ment. This is needed in order to build a mex interface for a FORCESPRO nonlinear solver that
is customized to the model provided by the user.

Given an NLMPC object created by the nlmpc command, users can generate an IP or SQP
nonlinear solver tailored to their specific problem via the following command:

% nlobj is the output of nlmpc(...)
% options is the output of nlmpcToForcesOptions(...)

[coredata, onlinedata] = nlmpcToForces(nlobj, options);

Two types of nonlinear solvers can be generated vianlmpcToForces: a nonlinear interior-point
solver and a sequential quadratic programming solver whose features are covered in details
in Sequential quadratic programming algorithm.

The nlmpcToForces API is described in more details in the tables below. The nlmpcToForces
command expects an NLMPC object nlobj and a structure options as arguments. It also has
a few limitations as it currently does not support custom cost and constraints. Instead one
should in this case use an nlmpcMultistage object to represent custom cost and constraints.
It also requires double precision.

Table 7.1: nlmpcToForces arguments
Input Description
nlobj NMPC object constructed by Model Predictive Control Toolbox (see here)
options Object that provides solver generation options.

The outputs of nlmpcToForces consist of two structures coredata, a structure containing the
constant NLMPC information used by nlmpcmoveForces and onlinedata, a structure that
allows you to specify online signals such as x, lastMV, ref, MVTarget, md as well as weights or
bounds used by nlmpcmoveForces.

In order to provide the solver options to nlmpcToForces, the user needs to run the command
nlmpcToForcesOptions. The options structure contains the following fields:

• SolverName. This is the solver name used by MEX and C files. Its default value is
myForcesNLPSolver.

• SolverType. This option specifies which FORCESPRO nonlinear programming solver to
use. Its default value is InteriorPoint. To use the FORCESPRO SQP algorithm set the
value to SQP.

• SkipSolverGeneration. This option indicates whether nlmpcToForces should generate
the custom NLP solver. When true, nlmpcToForces will return structures without re-
generating the MEX and C files. Its default value is false.
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• Server. This option specifies the FORCESPRO server address for remote solver genera-
tion. Its default value is https://forces.embotech.com.

• PrintLevel. This option specifies the amount of information displayed in the solver log.

– 0: no output will be written

– 1: summary line of each solve

– 2: summary line of each iteration

Its default value is 0.

• IntegrationNodes. This option specifies the the number of intermediate points between
𝑡 and 𝑡+ 𝑇𝑠 during numerical integration of a continuous time model. Use larger values
when the plant is stiff at the price of computational efficiency. Its default value is 1. The
approach used here is refered to as direct multiple shooting.

• x0. This option is used to create initial guess of optimal state trajectory at cold start. It
must be a column vector of nx-by-1. The typical value should be the initial state of the
prediction model. If it is left empty, zeros will be used for cold start. Its default value is [].

• mv0. This option is used to create initial guess of optimal manipulated variable trajectory
at cold start. It must be a column vector of nmv-by-1. The typical value should be the last
known control action. If it is left empty, zeros will be used for cold start.

• Parameter. This option should be specified if the prediction model has a parameter. It
must be a column-vector and it can be updated at run-time.

• UseMVTarget. This option enables/disables MV reference signal. When equal to true, the
MV reference signal is provided via the onlinedata structure. When equal to false, the
MV reference is 0 by default. In this case, MV weights should be zero to avoid unexpected
behavior. Default value is false.

• UseOnlineWeightOV. This option enables/disables online OV weight change. When
equal to true, OV weight needs to be provided via onlinedata structure. Its default
value is false.

• UseOnlineWeightMV. This option enables/disables online MV weight change. When
equal to true, MV weight needs to be provided via onlinedata structure. Its default
value is false.

• UseOnlineWeightMVRate. This option enables/disables online MVRate weight change.
When equal to true, MVRate weight needs to be provided via onlinedata structure. Its
default value is false.

• UseOnlineWeightECR. This field enables/disables online ECR weight change. When
equal to true, ECR weight needs to be provided via onlinedata structure. Its default
value is false.

• UseOnlineConstraintStateMax. This option enables/disables online state upper bound
change. When equal to true, state upper bound needs to be provided via onlinedata
structure. Its default value is false.

• UseOnlineConstraintStateMin. This field enables/disables online state lower bound
change. When equal to true, state lower bound needs to be provided via onlinedata
structure. Its default value is false.

• UseOnlineConstraintOVMax. This field enables/disables online OV upper bound
change. When equal to true, OV upper bound needs to be provided via the onlinedata
structure. Its default value is false.

• UseOnlineConstraintOVMin. This option enables/disables online OV lower bound
change. When equal to true, OV lower bound needs to be provided via the onlinedata
structure. Its default value is false.
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• UseOnlineConstraintMVMax. This field enables/disables online MV upper bound
change. When equal to true, MV upper bound needs to be provided via the onlinedata
structure. Its default value is false.

• UseOnlineConstraintMVMin. This field enables/disables online MV lower bound change.
When equal to true, MV lower bound needs to be provided via the onlinedata structure.
Its default value is false.

• UseOnlineConstraintMVRateMax. This option enables/disables online MVRate upper
bound change. When equal to true, MVRate upper bound needs to be provided via
the onlinedata structure. Its default value is false.

• UseOnlineConstraintMVRateMin. This option enables/disables online MVRate lower
bound change. When equal to true, MVRate lower bound needs to be provided via the
onlinedata structure. Its default value is false.

The following set of options are specific to the nonlinear interior point solver:

• IP_MaxIteration. This field specifies the maximum number of iterations in the interior
point solver. When the maximum number of iterations is reached (i.e. ExitFlag is 0), the
NLP solver aborts calculations and the result should be discarded. Default value is 200.

• IP_Mu0. This field specifies initial barrier parameter. It must be positive and its default
value is 0.1.

• IP_BarrierStrategy. This option specifies the strategy used to update the barrier parame-
ter at every iteration of the nonlinear interior point solver. It needs to be either monotone
or loqo. logo often leads to faster convergence, while monotone may help convergence
for difficult problems. Default value is loqo.

• IP_LinearSolver. This option sets the linear solver. It must be either normal_eqs,
symm_indefinite, symm_indefinite_fast or symm_indefinite_legacy. With normal_eqs,
the KKT system is solved in normal equations form. With symm_indefinite, the KKT sys-
tem is solved with an improved variant of 'symm_indefinite_legacy' introduced in
FORCESPRO version 5.0.0. With symm_indefinite_legacy, the KKT system is solved us-
ing block-indefinite factorizations. With symm_indefinite_fast, the KKT system is solved
in symmetric indefinite form, using regularization and positive definite Cholesky factor-
izations only. Default value is normal_eqs.

• IP_EqualityTolerance. This option specifies the tolerance on the nonlinear equality con-
straints used by the nonlinear interior point solver. It must be positive. Default value is
10−6.

• IP_InequalityTolerance. This field specifies the tolerance on the nonlinear inequality con-
straints used by the interior-point solver. It needs to be positive and its default value is
10−6.

• IP_StationarityTolerance. This option specifies the tolerance on the stationarity measure
used in the nonlinear interior point solver. It needs to be positive and its default value is
10−5.

The following set of options are specific to the sequential quadratic programming solver:

• SQP_MaxIteration. This field specifies the maximum number of iterations used by the
inner QP solver. Its default value is 50.

• SQP_MaxQPS. This enables the SQP solver to solve a fixed amount of quadratic approx-
imations at every call to the solver. In general, the more quadratic approximations are
solved, the more accurate control performance is achieved. The tradeoff is that the sol-
vetime also increases. The default value is 1.

• SQP_RegHessian. This field stands for the level of regularization of the hessian approxi-
mation. Increasing this parameter may help if the SQP solver returns exitflag −8 on your
problem. The default value is 5 · 10−9.
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• SQP_EqualityTolerance. This option specifies the tolerance on the nonlinear equality
constraints. It must be positive and its default value is 10−6.

• SQP_InequalityTolerance. This option specifies the tolerance on the linear inequality
constraints. It must be positive and its default value is 10−6.

• SQP_StationarityTolerance. This field specifies the tolerance on stationarity. It must be
positive and its default value is 10−5.

7.3.2 Using an “nlmpcMultistage” object

When generating a FORCESPRO solver using an nlmpcMultistage object, the main differ-
ence compared to the existing nonlinear MPC from The MathWorks based on the fmincon
solver from the Optimization Toolbox is a code generation step that takes the nonlinear MPC
object as argument. This is needed in order to build a mex interface for a FORCESPRO non-
linear solver that is customized to the model provided by the user.

Given an nlmpcMultistage object, users can generate an IP nonlinear solver tailored to their
specific problem via the following command:

% nlmul is the output of nlmpcMultistage(...)
% options is the output of nlmpcMultistageToForcesOptions(...)

[coredata, onlinedata] = nlmpcMultistageToForces(nlmul, options);

The nlmpcMultistageToForces API allows the user to customize the generated solver to a
much higher extend than that of the nlmpc object. In particular it supports a different cost
function associated with each stage, with the restriction that each cost function can only
depend on the optimization variables of a single stage.

The nlmpcMultistageToForces API is described in more details in the tables below. The
nlmpcMultistageToForces command expects an nlmpcMultistage object nlmul and a
structure options as arguments.

Table 7.2: nlmpcMultistageToForces arguments
Input Description
nlmul nlmpcMultistage object constructed by Model Predictive Control Toolbox (see here)
options Object that provides solver generation options.

The outputs of nlmpcMultistageToForces consist of two structures coredata, a structure
containing the constant NLMPCMultistage information used by nlmpcmoveForcesMulti-
stage and onlinedata, a structure that allows you to specify online signals such as x, lastMV,
ref, MVTarget, md as well as weights or bounds used by nlmpcmoveForces.

In order to provide the solver options to nlmpcmoveForcesMultistage, the user needs to
run the command nlmpcMultistageToForcesOptions. The options structure contains the
following fields:

• SolverName. This is the solver name used by MEX and C files. Its default value is
myForcesNLPSolver.

• SolverType. This option specifies which FORCESPRO nonlinear programming solver to
use. Currently the only options is InteriorPoint.

• SkipSolverGeneration. This option indicates whether nlmpcToForces should generate
the custom NLP solver. When true, nlmpcMultistageToForces will return structures
without regenerating the MEX and C files. Its default value is false.

• Server. This option specifies the FORCESPRO server address for remote solver genera-
tion. Its default value is https://forces.embotech.com.

• PrintLevel. This option specifies the amount of information displayed in the solver log.
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– 0: no output will be written

– 1: summary line of each solve

– 2: summary line of each iteration

Its default value is 0.

• IntegrationNodes. This option specifies the the number of intermediate points between
𝑡 and 𝑡+ 𝑇𝑠 during numerical integration of a continuous time model. Use larger values
when the plant is stiff at the price of computational efficiency. Its default value is 1. The
approach used here is refered to as direct multiple shooting.

• x0. This option is used to create initial guess of optimal state trajectory at cold start. It
must be a column vector of nx-by-1. The typical value should be the initial state of the
prediction model. If it is left empty, zeros will be used for cold start. Its default value is [].

• mv0. This option is used to create initial guess of optimal manipulated variable trajectory
at cold start. It must be a column vector of nmv-by-1. The typical value should be the last
known control action. If it is left empty, zeros will be used for cold start.

• NumInequalityConstraints. Must be a (𝑝+ 1)-by-1 vector where each entry specifies the
number of inequality constraints gnerated by the IneqConFcn at that stage. Leave it []
if no IneqConFcn id defined in the nlmpcMultistage object.

• NumEqualityConstraints. Must be a 𝑝-by-1 vector where each entry specifies the num-
ber of equality constraints generated by the EqConFcn at that stage. Leave it [] if no
EqConFcn is defined in the nlmpcMultistage object.

• UseOnlineConstraintStateMax. This option enables/disables online state upper bound
change. When equal to true, state upper bound needs to be provided via onlinedata
structure. Its default value is false.

• UseOnlineConstraintStateMin. This field enables/disables online state lower bound
change. When equal to true, state lower bound needs to be provided via onlinedata
structure. Its default value is false.

• UseOnlineConstraintMVMax. This field enables/disables online MV upper bound
change. When equal to true, MV upper bound needs to be provided via the onlinedata
structure. Its default value is false.

• UseOnlineConstraintMVMin. This field enables/disables online MV lower bound change.
When equal to true, MV lower bound needs to be provided via the onlinedata structure.
Its default value is false.

• UseOnlineConstraintMVRateMax. This option enables/disables online MVRate upper
bound change. When equal to true, MVRate upper bound needs to be provided via
the onlinedata structure. Its default value is false.

• UseOnlineConstraintMVRateMin. This option enables/disables online MVRate lower
bound change. When equal to true, MVRate lower bound needs to be provided via the
onlinedata structure. Its default value is false.

• UseOnlineTerminalState. This option enables/disables online terminal state condition.
When equal to true, terminal state values need to be provided via the onlinedata struc-
ture. Its default value is false.

The following set of options are specific to the nonlinear interior point solver:

• IP_MaxIteration. This field specifies the maximum number of iterations in the interior
point solver. When the maximum number of iterations is reached (i.e. ExitFlag is 0), the
NLP solver aborts calculations and the result should be discarded. Default value is 200.

• IP_Mu0. This field specifies initial barrier parameter. It must be positive and its default
value is 0.1.

• IP_BarrierStrategy. This option specifies the strategy used to update the barrier parame-
ter at every iteration of the nonlinear interior point solver. It needs to be either monotone
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or loqo. logo often leads to faster convergence, while monotone may help convergence
for difficult problems. Default value is loqo.

• IP_LinearSolver. This option sets the linear solver. It must be either normal_eqs,
symm_indefinite, symm_indefinite_fast or symm_indefinite_legacy. With normal_eqs,
the KKT system is solved in normal equations form. With symm_indefinite, the KKT sys-
tem is solved with an improved variant of 'symm_indefinite_legacy' introduced in
FORCESPRO version 5.0.0. With symm_indefinite_legacy, the KKT system is solved us-
ing block-indefinite factorizations. With symm_indefinite_fast, the KKT system is solved
in symmetric indefinite form, using regularization and positive definite Cholesky factor-
izations only. Default value is normal_eqs.

• IP_EqualityTolerance. This option specifies the tolerance on the nonlinear equality con-
straints used by the nonlinear interior point solver. It must be positive. Default value is
10−6.

• IP_InequalityTolerance. This field specifies the tolerance on the nonlinear inequality con-
straints used by the interior-point solver. It needs to be positive and its default value is
10−6.

• IP_StationarityTolerance. This option specifies the tolerance on the stationarity measure
used in the nonlinear interior point solver. It needs to be positive and its default value is
10−5.

7.4 Simulation in MATLAB and Simulink

Once a FORCESPRO nonlinear solver has been generated by calling either nlmpcToForces
or nlmpcMultistageToForces, optimal control moves can be calculated in MATLAB
by using either nlmpcmoveForces or nlmpcmoveForcesMultistage depending on the
case. This API method expects a coredata structure as returned by nlmpcToForces or
nlmpcMultistageToForces as well as the other inputs described in Table below.

Table 7.3: nlmpcmoveForces and nlmpcMultistageTo-
Forces arguments

Input Description
coredata A structure containing the constant controller settings. It is generated by

the nlmpcToForces method and used as a constant
x A 𝑛𝑥-by-1 column vector, representing the current prediction model states
lastMV A 𝑛𝑚𝑣-by-1 column vector, representing the control action applied to the

plant at the previous control interval
onlinedata A structure containing run time signals

The outputs of nlmpcmoveForces and nlmpcMultistageToForces are described in the table
below.

Table 7.4: nlmpcmoveForces and nlmpcMultistageTo-
Forces outputs

Output Description
mv Optimal control moves computed by a FORCESPRO solver
onlinedata A structure prepared for the next control, containing e.g. the initial guess.
info A structure containing extra information about the solver run
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7.5 Code generation in MATLAB and Simulink

The nlmpcmoveForces and nlmpcmoveForcesMultistage commands can be turned into a
MEX interface named nlmpcmove_<solvername> by means of the SkipSolverGeneration. If
the option is set to true, then no MEX interface is built by the MATLAB Coder. If it is set to false,
then the nlmpcmove MEX interface is generated and compiled, which requires the MATLAB
Coder.

7.6 Examples

Here we present the following examples to illustrate the workflow of the FORCESPRO plugin
for the MPC Toolbox:

• Example Controlling a CSTR reactor illustrates how to generate a FORCESPRO solver
from an NLMPC object directly in MATLAB®.

• Example Lane following example illustrates how to generate a FORCESPRO solver from
an NLMPC object and run it based on the nlmpc Simulink block.

• Example Rocket landing example illustrates how to generate a FORCESPRO solver from
an NLMPCMultistage object.

7.6.1 Controlling a CSTR reactor

In this example we create a nonlinear MPC controller for a CSTR reactor using the MathWorks
Nonlinear MPC Plugin. The objective is to control the concentration 𝐶𝐴 of reagent 𝐴.

You can find the code of this example to try it out for yourself in the examples/matlab/
mpc-toolbox-plugin/nonlinearModels/nlmpc_cstr folder that comes with your FORCE-
SPRO client.

Click here for a detailed description of the model. The state of our plant will be denoted by 𝑥,
while our control input will be denoted by 𝑢.

𝑥1 : Reactor temparature (𝐾)

𝑥2 : Concentration of 𝐴 in reactor tank
(︂
𝑘𝑔𝑚𝑜𝑙

𝑚3

)︂
𝑢1 : Jacket coolant temperature (𝐾)

𝑢2 : Concentration of A in inlet feed stream
(︂
𝑘𝑔𝑚𝑜𝑙

𝑚3

)︂
𝑢3 : Inlet feed stream temperature (𝐾)

The system dynamics are given by the following first order differential equation

𝑥1 = (𝑢3 − 𝑥1) + 0.3 · (𝑢1 − 𝑥1) + 11.92 · 27944640 · exp(−5894.14
𝑥1

) · 𝑢2
𝑥2 = (𝑢2 − 𝑥2) − 27944640 · exp(−5894.14

𝑥1
) · 𝑢2

For the purpose of this demonstration the MATLAB function describing the state dynamics
will be denoted by exocstrStateFcnCT. Our output 𝑦 is simply given by the concentration of
𝐴:

𝑦 = 𝑥2
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Creating an NLMPC object

The MATLAB function implementing this output will be denoted by exocstrOutputFcn. With
the implemented exocstrStateFcnCT and exocstrOutputFcn MATLAB functions at hand we
can go ahead create our NLMPC object. The following code-snippet constructs the NLMPC
object and specifies our model.

nx = 2;
ny = 1;
nu = 3;
nlobj = nlmpc(nx,ny,'MV',1,'MD',[2 3]);
Ts = 0.5;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = 6;
nlobj.ControlHorizon = [2 2 2];
nlobj.MV.RateMin = -5;
nlobj.MV.RateMax = 5;
nlobj.Model.StateFcn = 'exocstrStateFcnCT';
nlobj.Model.OutputFcn = 'exocstrOutputFcn';

Specifying solver options

The followowing specifies the code options specific to FORCESPRO’s MathWorks Nonlinear
MPC Plugin:

options = nlmpcToForcesOptions();
options.SolverName = 'CstrSolver';
options.SolverType = 'SQP';
options.IntegrationNodes = 5;
options.SQP_MaxQPS = 5;
options.SQP_MaxIteration = 500;
options.x0 = [311.2639; 8.5698];
options.mv0 = 298.15;

Generating the NLP solver

Once we have our NLMPC object and our options we can generate an NLP solver through
the nlmpcToForces function:

[coredata, onlinedata] = nlmpcToForces(nlobj,options);

Calling the solver

This will generate our NLP solver named CstrSolver. We can call this solver in two different
ways:

• Through the generic nlmpcmoveForces function which comes with the FORCESPRO
MathWorks Nonlinear MPC Plugin

• Or through the generated MEX function nlmpcmove_CstrSolver (the name of the MEX
is always “nlmpc_<solver name>”). In general it is advantagous from a performance per-
spective to use the MEX over the generic nlmpcmoveForces function.

Calling the NLP solver through the generic nlmpcmoveToForces can be done as in the fol-
lowing code-snippet:
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onlinedata.md = [10 298.15];
[mv, onlinedata, info] = nlmpcmoveForces(coredata,x,mv,onlinedata);

And the MEX can be called as follows:

[mv, onlinedata, info] = nlmpcmove_CstrSolver(x,mv,onlinedata);

Results

The NLP solver generated through the above code-snippets were applied in a simulation for
200 seconds. As can be seen in the plots Figure 7.1, Figure 7.2 and Figure 7.3 the generated
solver succeeds in controlling the CSTR reactor with a very fast solvetime while the output
stays close to the reference.

Figure 7.1: Cost as a function of time.

7.6.2 Lane following example

In this example, the use of the nlmpc plugin in Simulink is described. The example consists
in making a vehicle follow a central line while keeping a user-specified velocity.

You can find the code of this example to try it out for yourself in the examples/matlab/
mpc-toolbox-plugin/nonlinearModels/lane_following folder that comes with your
FORCESPRO client.

Create an NLMPC object

An nlmpc object with measured and unmeasured disturance is first created.
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Figure 7.2: Solve time as a function of simulation time.

Figure 7.3: Concentration of 𝐴 as a function of simulation time.
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nlobj = nlmpc(7,3,'MV',[1 2],'MD',3,'UD',4);

The NMPC controller sample time, prediction horizon and control horizon are then specified.

nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 2;

The dynamics are provided as a function name.

nlobj.Model.StateFcn = 'LaneFollowingStateFcn';

The output variables returned by LaneFollowingOutputFcn are the longitudinal velocity, the
lateral deviation and the sum of the yaw angle and yaw angle output disturbance

nlobj.Model.OutputFcn = 'LaneFollowingOutputFcn';

Bound constraints are set on the manipulated (input) variables.

nlobj.MV(1).Min = -3; % Maximum acceleration 3 m/s^2
nlobj.MV(1).Max = 3; % Minimum acceleration -3 m/s^2
nlobj.MV(2).Min = -1.13; % Minimum steering angle -65
nlobj.MV(2).Max = 1.13; % Maximum steering angle 65

Scaling factors are incorporated on output and manipulated variables to optimize solver per-
formance.

nlobj.OV(1).ScaleFactor = 15; % Typical value of longitudinal velocity
nlobj.OV(2).ScaleFactor = 0.5; % Range for lateral deviation
nlobj.OV(3).ScaleFactor = 0.5; % Range for relative yaw angle
nlobj.MV(1).ScaleFactor = 6; % Range of steering angle
nlobj.MV(2).ScaleFactor = 2.26; % Range of acceleration
nlobj.MD(1).ScaleFactor = 0.2; % Range of Curvature

Weights on outputs and the rates of manipulated variables are set in the NLMPC object ob-
jective function.

nlobj.Weights.OutputVariables = [1 1 0];

%%
% Penalize acceleration change more for smooth driving experience.
nlobj.Weights.ManipulatedVariablesRate = [0.3 0.1];

A nonlinear interior-point FORCESPRO solver is generated from a customizable options struc-
ture.

options = nlmpcToForcesOptions();
% Set solver name
options.SolverName = 'LaneFollowSolver';
% Choose solver type 'InteriorPoint' or 'SQP'
options.SolverType = 'InteriorPoint';
% x0 and u0 are used to create a primal initial guess
options.x0 = x0;
options.mv0 = u0;
tm = tic;
[coredata, onlinedata] = nlmpcToForces(nlobj,options);
tBuild = toc(tm);

The FORCESPRO NLMPC Simulink block can then be used seamlessly. It is available in the
Simulink Library Browser in the Model Predictive Control Toolbox section, as shown in Figure
Figure 7.4.
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Figure 7.4: FORCESPRO NMPC block.

In order to run the nonlinear interior-point solver, the coredata structure returned by nlm-
pcToForces must be provided in the block mask, as shown in Figure Figure 7.5.

Figure 7.5: FORCESPRO NMPC block mask.

The Simulink model can finally be run using the sim command.

sim('LaneFollowingNMPC')

Results are shown in Figures Figure 7.6 and Figure 7.7.

Simulink Coder (R) enables users to generate an executable from the FORCESPRO NLMPC
block, so that it can be deployed for real-time applications.

7.6.3 Deploying the Lane Following Model on Speedgoat

The lane following model in Figure Figure 7.8 can be easily deployed on Speedgoat platforms
by means of the code below.

% Choose Speedgoat x86 platform to run FORCESPRO solver
options.ForcesTargetPlatform = 'Speedgoat-x86';

(continues on next page)
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Figure 7.6: Vehicle lateral deviation.

Figure 7.7: Vehicle velocity.
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(continued from previous page)

% x0 and u0 are used to create a primal initial guess
options.x0 = x0;
options.mv0 = u0;
% Generate FORCESPRO solver
tm = tic;
[coredata, onlinedata] = nlmpcToForces(nlobj,options);
tBuild = toc(tm);

%%
% Start code generation for Speedgoat x86
mdl = 'LaneFollowingNMPC_Speedgoat_x86';
open_system(mdl); % Open Simulink(R) Model
load_system(mdl); % Load Simulink(R) Model
rtwbuild(mdl); % Start Code Generation

% Deploy application from the start
tg = slrt;
if(~strcmpi(tg.Application, 'loader'))

tg.unload();
end
tg.load(mdl);

% Execute application
tg.start();
while(strcmpi(tg.Status, 'running'))

pause(Ts);
end
scope1 = tg.getscope(1);
scope2 = tg.getscope(2);
scope3 = tg.getscope(3);

Figure 7.8: Simulink Real-Time Lane Following model for Speedgoat deployment.

All the files necessary to run this example can be downloaded here.

7.6.4 Rocket landing example

In this example we consider the motion planning problem of landing a rocket safely. The
FORCESPRO solver is generated using a NLMPCMultistage object. We will cover the details
of the model below. For further details, see here.
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You can find the code of this example to try it out for yourself in the examples/matlab/
mpc-toolbox-plugin/nonlinearModels/rocket_planner folder that comes with your
FORCESPRO client.

The dynamical model

The model we consider is a first-principles non-linear dynamical model. The state 𝑥 of our sys-
tem is 6-dimensional while the control 𝑢 is 2-dimensional. The interpretation of the different
states/control inputs is given as follows:

𝑢1 : Left thrust (𝑁)

𝑢2 : Right thrust (𝑁)

𝑥1 : Horizontal position of the center of gravity (𝑚)

𝑥2 : Vertical position of the center of gravity (𝑚)

𝑥3 : Tilt with respect to the center of gravity (𝑟)

𝑥4 = 𝑑𝑥1

𝑑𝑡 (𝑚𝑠 )

𝑥5 = 𝑑𝑥2

𝑑𝑡 (𝑚𝑠 )

𝑥6 = Angular velocity ( 𝑟𝑠 )

The differential equation governing the dynamics is given by

𝑥̇1 = 𝑥4

𝑥̇2 = 𝑥5

𝑥̇3 = 𝑥6

𝑥̇4 =
− sin(𝑥3)(𝑢1 + 𝑢2)

𝑚

𝑥̇5 =
cos(𝑥3)(𝑢2 − 𝑢1)

𝑚
− 𝑔

𝑥̇6 =
2𝐿2(𝑢2 − 𝑢1)

𝑚𝐿2
1

,

where we use of the following constants:

Name Value Description
𝐿1 10𝑚 Center of gravity to top/bottom end
𝐿2 5𝑚 Center of gravity to left/right end
𝑚 1𝑘𝑔 Mass of rocket
𝑔 9.806𝑚𝑠2 Gravitational constant

Constructing a NLMPCMultistage object

The first step to generate a FORCESPRO solver is to construct a nlmpcMultistage object and
set the constraints on our manipulated variables (MV) and states (State).

% Construct nlmpcMultistage object and set dynamics
Ts = 0.2;
pPlanner = 50;
planner = nlmpcMultistage(pPlanner,6,2);
planner.Ts = Ts;

% Limit thrusts between 0 and 8 Newton
planner.MV(1).Min = 0;
planner.MV(1).Max = 8;

(continues on next page)
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planner.MV(2).Min = 0;
planner.MV(2).Max = 8;

% Specify lower bound on y-axis to avoid crashing
planner.States(2).Min = 10;

Then we specify the state transition function along with a cost function for every stage. Note
that these functions are specified via the of the function.

planner.Model.StateFcn = 'RocketStateFcn';
for ct=1:pPlanner

planner.Stages(ct).CostFcn = 'RocketPlannerCostFcn';
end

Specifying solver options and generating a solver

Once we have defined our nlmpcMultistage object planner we need to specify information
about the solver we would like to generate. This can be done through the options generated
by nlmpcMultistageToForcesOptions

%% Generate FORCES NLP Solver
options = nlmpcMultistageToForcesOptions;
options.Server = 'https://forces.embotech.com/';
options.x0 = x0;
options.mv0 = u0;
options.UseOnlineConstraintMVMin = true;
options.UseOnlineConstraintMVMax = true;
options.UseOnlineConstraintStateMin = true;

With both our options and nlmpcMultistage object at hand we can go ahead and generate
the FORCESPRO solver:

[coredata, onlinedata, model] = nlmpcMultistageToForces(planner, options);

Results

In plot Figure 7.9 the optimal trajectory for landing the rocket is displayed. As can be ob-
served in the generated animation which appears when running the code (see Figure 7.10),
the FORCESPRO solver manages to control the rocket and land it safely.
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Figure 7.9: Optimal rocket trajectory.

Figure 7.10: Rocket lander animation generated when running the rocket lander example.
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Chapter 8

Low-level interface

FORCESPRO supports designing solvers and controllers via MATLAB and Python scripts.
When using the MATLAB client, a Simulink block is always created such that you can plug
your advanced formulation directly into your simulation models, or download it to a real-time
target platform.

The low-level interface gives advanced optimization users the full flexibility when designing
custom optimization solvers and MPC controllers based on non-standard formulations.

This interface is provided with all variants of FORCESPRO, starting with Variant S.

8.1 Supported problem class

The FORCESPRO low-level interface supports the class of convex multistage quadratically
constrained programs (QCQPs) of the form

minimize
𝑁∑︁
𝑖=1

1

2
𝑧⊤𝑖 𝐻𝑖𝑧𝑖 + 𝑓⊤𝑖 𝑧𝑖 (separable objective)

subject to 𝐷1𝑧1 = 𝑐1 (initial equality)
𝐶𝑖−1𝑧𝑖−1 +𝐷𝑖𝑧𝑖 = 𝑐𝑖, 𝑖 = 2, . . . , 𝑁 (inter-stage equality)
𝑧𝑖 ≤ 𝑧𝑖 (lower bound)
𝑧𝑖 ≤ 𝑧𝑖 (upper bound)
𝐴𝑖𝑧𝑖 ≤ 𝑏𝑖 (polytopic inequalities)

𝑧⊤𝑖 𝑄𝑖,𝑘𝑧𝑖 + 𝐿⊤
𝑖,𝑘𝑧𝑖 ≤ 𝑟𝑖,𝑘 (quadratic inequalities)

for 𝑖 = 1, ..., 𝑁 and 𝑘 = 1, ...,𝑀 . To obtain a solver for this optimization program using the
FORCESPRO client, you need to define all data in the problem, that is the matrices 𝐻𝑖, 𝐴𝑖,
𝑄𝑖,𝑗 , 𝐷𝑖, 𝐶𝑖 and the vectors 𝑧𝑖, 𝑧𝑖, 𝑏𝑖, 𝐿𝑖,𝑘 , 𝑟𝑖,𝑘 , 𝑐𝑖, in a MATLAB struct or Python dictionary, along
with the corresponding dimensions. The following steps will take you through this process.
Importantly, the matrices 𝐻𝑖 and 𝑄𝑖,𝑗 should all be positive definite.

Note: FORCESPRO supports all problem data to be parametric, i.e. to be unknown at code
generation time. Read Section 12 to learn how to use parameters correctly.

In the following, we describe how to model a problem of the above form with FORCESPRO.
First make sure that the FORCESPRO client is on the MATLAB/Python path. See Section 3 for
more details on how to set up the MATLAB client and Section 3.3.

After the PYTHONPATH has been appropriately set up to include your FORCESPRO client
directory (see Section 3.3.3), Python users have to import the FORCESPRO module:
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import forcespro

8.2 Multistage struct

First, an empty struct/class has to be initialized, which contains all fields needed and initialises
matrices and vectors to empty matrices. The command

Matlab

Python

stages = MultistageProblem(N);

stages = forcespro.MultistagePoblem(N)

creates such an empty structure/class of length𝑁 . Once this structure/class has been created,
the corresponding matrices, vectors and dimensions can be set for each element of stages.

8.3 Dimensions

In order to define the dimensions of the stage variables 𝑧𝑖, the number of lower and upper
bounds, the number of polytopic inequality constraints and the number of quadratic con-
straints use the following fields:

Matlab

Python

stages(i).dims.n = ...; % length of stage variable zi
stages(i).dims.r = ...; % number of equality constraints
stages(i).dims.l = ...; % number of lower bounds
stages(i).dims.u = ...; % number of upper bounds
stages(i).dims.p = ...; % number of polytopic constraints
stages(i).dims.q = ...; % number of quadratic constraints

stages.dims[ i ]['n'] = ... # length of stage variable zi
stages.dims[ i ]['r'] = ... # number of equality constraints
stages.dims[ i ]['l'] = ... # number of lower bounds
stages.dims[ i ]['u'] = ... # number of upper bounds
stages.dims[ i ]['p'] = ... # number of polytopic constraints
stages.dims[ i ]['q'] = ... # number of quadratic constraints

8.4 Cost function

The cost function is, for each stage, defined by the matrix 𝐻𝑖 and the vector 𝑓𝑖. These can be
set by

Matlab

Python

stages(i).cost.H = ...; % Hessian
stages(i).cost.f = ...; % linear term
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stages.cost[i]['H'] = ... # Hessian
stages.cost[i]['f'] = ... # linear term

Note: whenever one of these terms is zero, you have to set them to zero (otherwise the default
of an empty matrix is assumed, which is different from a zero matrix).

8.5 Equality constraints

The equality constraints for each stage, which are given by the matrices 𝐶𝑖, 𝐷𝑖 and the vector
𝑐𝑖, have to be provided in the following form:

Matlab

Python

stages(i).eq.C = ...;
stages(i).eq.c = ...;
stages(i).eq.D = ...;

stages.eq[ i ]['C'] = ...
stages.eq[ i ]['c'] = ...
stages.eq[ i ]['D'] = ...

8.6 Lower and upper bounds

Lower and upper bounds have to be set in sparse format, i.e. an index vector lbIdx/ubIdx that
defines the elements of the stage variable 𝑧𝑖 has to be provided, along with the corresponding
upper/lower bound lb/ub:

Matlab

Python

stages(i).ineq.b.lbidx = ...; % index vector for lower bounds
stages(i).ineq.b.lb = ...; % lower bounds
stages(i).ineq.b.ubidx = ...; % index vector for upper bounds
stages(i).ineq.b.ub = ...; % upper bounds

stages.ineq[ i ]['b']['lbidx'] = ... # index vector for lower bounds
stages.ineq[ i ]['b']['lb'] = ... # lower bounds
stages.ineq[ i ]['b']['ubidx'] = ... # index vector for upper bounds
stages.ineq[ i ]['b']['ub'] = ... # upper bounds

Both lb and lbIdx must have length stages(i).dims.l / stages.dims[ i ][‘l’], and both ub and ubIdx
must have length stages(i).dims.u / stages.dims[ i ][‘u’].

8.7 Polytopic constraints

In order to define the inequality 𝐴𝑖𝑧𝑖 ≤ 𝑏𝑖, use

Matlab

Python
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stages(i).ineq.p.A = ...; % Jacobian of linear inequality
stages(i).ineq.p.b = ...; % RHS of linear inequality

stages.ineq[ i ]['p']['A'] = ... # Jacobian of linear inequality
stages.ineq[ i ]['p']['b'] = ... # RHS of linear inequality

The matrix A must have stages(i).dims.p / stages.dims[ i ][‘p’] rows and stages(i).dims.n /
stages.dims[ i ][‘n’] columns. The vector b must have stages(i).dims.p / stages.dims[ i ][‘p’]
rows.

8.8 Quadratic constraints

Similar to lower and upper bounds, quadratic constraints are given in sparse form by means of
an index vector, which determines on which variables the corresponding quadratic constraint
acts.

Matlab

Python

stages(i).ineq.q.idx = { idx1, idx2, ...}; % index vectors
stages(i).ineq.q.Q = { Q1, Q2, ...}; % Hessians
stages(i).ineq.q.l = { L1, L2, ...}; % linear terms
stages(i).ineq.q.r = [ r1; r2; ... ]; % RHSs

stages.ineq[ i ]['q']['idx'] = ... # index vectors
stages.ineq[ i ]['q']['Q'] = ... # Hessians
stages.ineq[ i ]['q']['l'] = ... # linear terms
stages.ineq[ i ]['q']['r'] = ... # RHSs

If the index vector idx1 has length 𝑚1, then the matrix Q must be square and of size 𝑚1 ×𝑚1,
the column vector l1 must be of size𝑚1 and 𝑟1 is a scalar. Of course this dimension rules apply
to all further quadratic constraints that might be present. Note that 𝐿1, 𝐿2 etc. are column
vectors in MATLAB!

Since multiple quadratic constraints can be present per stage, in MATLAB we make use of
the cell notation for the Hessian, linear terms, and index vectors. In Python we make use of
Python object arrays for the Hessians, linear terms, and index vectors.

8.8.1 Example

To express the two quadratic constraints

𝑧23,3 + 2𝑧23,5 − 𝑧3,5 ≤ 3

5𝑧23,1 ≤ 1

on the third stage variable, use the code

Matlab

Python

stages(3).ineq.q.idx = { [3 5], [1] } % index vectors
stages(3).ineq.q.Q = { [1 0; 0 2], [5] }; % Hessians
stages(3).ineq.q.l = { [0; -1], [0] }; % linear terms
stages(3).ineq.q.r = [ 3; 1 ]; % RHSs
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stages.ineq[3-1]['q']['idx'] = np.zeros((2,), dtype=object) # index vectors
stages.ineq[3-1]['q']['idx'][0] = np.array([3,5])
stages.ineq[3-1]['q']['idx'][1] = np.array([1])
stages.ineq[3-1]['q']['Q'] = np.zeros((2,), dtype=object) # Hessians
stages.ineq[3-1]['q']['Q'][0] = np.array([1.0 0],[0 2.0])
stages.ineq[3-1]['q']['Q'][1] = np.array([5])
stages.ineq[3-1]['q']['l'] = np.zeros((2,), dtype=object) # linear terms
stages.ineq[3-1]['q']['l'][0] = np.array([0], [-1])
stages.ineq[3-1]['q']['l'][1] = np.array([0])
stages.ineq[3-1]['q']['r'] = np.array([3],[1]) # RHSs

8.9 Binary constraints

To declare binary variables, you can use the bidx field of the stages struct or object. For ex-
ample, the following code declares variables 3 and 7 of stage 1 to be binary:

Matlab

Python

stages(1).bidx = [3 7]

stages.bidx[0] = np.array([3, 7])

That’s it! You can now generate a solver that will take into account the binary constraints on
these variables. If binary variables are declared, FORCESPRO will add a branch-and-bound
procedure to the standard convex solver it generates.

8.10 Declaring Solver Outputs

FORCESPRO gives you full control over the part of the solution that should be outputted by
the solver. It is also possible to obtain the Lagrange multipliers of certain constraints. To define
a standard output as a slice of the primal solution vector, use the function

Matlab

Python

output = newOutput(name, maps2stage, idxWithinStage)

stages.newOutput(name, maps2stage, idxWithinStage)

where name is the name you give to the output (you will need this to read it after calling the
solver). The index vector (or integer) maps2stage defines to which stage this output maps to.
The last argument, idxWithinStage allows the user to select which indices from the stage
vector should be outputted by the solver.

To define an output as a slice of certain Lagrange multipliers, use the function

Matlab

Python

output = newOutput(name, maps2stage, idxWithinStage, maps2const)

stages.newOutput(name, maps2stage, idxWithinStage, maps2const)
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where the remaining argument maps2const specifies the constraint associated with the La-
grange multipliers being requested.

Table 8.1: Possible string values for argument maps2const
maps2const Constraint
r Equalities
u Upper bounds
l Lower bounds
p Polytopic bounds

8.10.1 Example

To define an output to be the first two elements of the primal solution vector, use the following
command:

Matlab

Python

output1 = newOutput('u0', 1, 1:2)

stages.newOutput('u0', 1, range(1,3))

To define an output to be the first and third indices of the Lagrange multipliers for the equality
constraints of the second stage, use the following command:

Matlab

Python

output2 = newOutput('dual_eq0', 2, [1 3], 'r')

stages.newOutput('dual_eq0', 2, [1,3], 'r')

8.11 Generating the solver

After the optimization problem has been formulated into a structure stages, an optimized
solver can be generated. To do so, the solver requires a name and a number of solver options,
as described in Section 15.

Matlab

Python

codeoptions = getOptions('solver name');
generateCode(stages, params, codeoptions, outputs);

options = forcespro.CodeOptions('solver_name')
stages.codeoptions = options
stages.generateCode('user_id')

8.12 Calling the generated low-level solver

After solver generation has completed, the solver itself (as a compiled library) as well as several
interfacing files will become available in your working directory. These files are named accord-
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ing to what you named your solver; in the following we assume “SOLVER_NAME”. Calling the
solver from MATLAB or Python is then as simple as:

Matlab

Python

problem = {} % a struct of solver parameters
SOLVER_NAME(problem)

import SOLVER_NAME_py # notice the _py suffix
problem = {} # a dictionary of solver parameters
SOLVER_NAME_py.SOLVER_NAME_solve(problem)

Note: Don’t give your solver the same name as the script you are calling it from. Doing
so will overwrite your calling script with the solver interface. For example, in a script named
test_problem.m, choose a name such as test_solver instead of test_problem.

Note: The high-level Python interface provides more convenient access to solvers generated
using the high-level interface. This method of calling a solver is only available for solvers gen-
erated through the low-level interface, and high-level solvers can only be called from Python
through the means described in the high-level interface documentation.
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Chapter 9

High-level Interface

The FORCESPRO high-level interface gives optimization users a familiar easy-to-use way to
define an optimization problem. The interface also gives the advanced user full flexibility
when importing external C-coded functions to evaluate the quantities involved in the op-
timization problem.

This interface is provided with Variant L and partially with Variant M of FORCESPRO.

Important: Starting with FORCESPRO 1.8.0, the solver generated from the high-level in-
terface supports nonlinear and convex decision making problems with integer variables.

Note: The high-level Python interface expects 0-based indices in the model formulation,
such as for the indices in lbidx, ubidx, hlidx, huidx, xinitidx and xfinalidx, as is usual in Python
programs. Note that this is contrary to the low-level interface, which requires 1-based indices
for these fields.

9.1 Supported problems

9.1.1 Canonical problem for discrete-time dynamics

The FORCESPRO NLP solver solves (potentially) non-convex, finite-time nonlinear optimal
control problems with horizon length 𝑁 of the form:

minimize
𝑁−1∑︁
𝑘=1

𝑓𝑘(𝑧𝑘, 𝑝𝑘) (separable objective)

subject to 𝑧1(ℐ) = 𝑧init (initial equality)
𝐸𝑘𝑧𝑘+1 = 𝑐𝑘(𝑧𝑘, 𝑝𝑘) (inter-stage equality)
𝑧𝑁 (𝒩 ) = 𝑧final (final equality)
𝑧𝑘 ≤ 𝑧𝑘 ≤ 𝑧𝑘 (upper-lower bounds)
𝐹𝑘𝑧𝑘 ∈ [𝑧𝑘, 𝑧𝑘] ∩ Z (integer variables)
ℎ𝑘 ≤ ℎ𝑘(𝑧𝑘, 𝑝𝑘) ≤ ℎ̄𝑘 (nonlinear constraints)

for 𝑘 = 1, . . . , 𝑁 , where 𝑧𝑘 ∈ R𝑛𝑘 are the optimization variables, for example a collection of
inputs, states or outputs in an MPC problem; 𝑝𝑘 ∈ R𝑙𝑘 are real-time data, which are not nec-
essarily present in all problems; the functions 𝑓𝑘 : R𝑛𝑘 × R𝑙𝑘 → R are stage cost functions; the
functions 𝑐𝑘 : R𝑛𝑘 × R𝑙𝑘 → R𝑤𝑘 represents (potentially nonlinear) equality constraints, such as
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a state transition function; the matrices 𝐸𝑘 are used to couple variables from the (𝑘 + 1)-th
stage to those of stage 𝑘 through the function 𝑐𝑘 ; and the functions ℎ𝑘 : R𝑛𝑘 × R𝑙𝑘 → R𝑚𝑘 are
used to express potentially nonlinear, non-convex inequality constraints. The index sets ℐ and
𝒩 are used to determine which variables are fixed to initial and final values, respectively. The
initial and final values 𝑧init and 𝑧final can also be changed in real-time. At every stage 𝑘, the
matrix 𝐹𝑘 is a selection matrix that picks some coordinates in vector 𝑧𝑘 .

All real-time data is coloured in red. Additionally, when integer variables are modelled, they
need to be declared as real-time parameters. See Section Mixed-integer nonlinear solver.

To obtain a solver for this optimization problem using the FORCESPRO client, you need to
define all functions involved (𝑓𝑘, 𝑐𝑘, ℎ𝑘) along with the corresponding dimensions.

9.1.2 Continuous-time dynamics

Instead of having discrete-time dynamics as can be seen in Section 9.1.1, we also support using
continuous-time dynamics of the form:

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑝)

and then discretizing this equation by one of the standard integration methods. See Section
9.2.4 for more details.

9.1.3 Other variants

Not all elements in Section 9.1.1 have to be necessarily present. Possible variants include prob-
lems:

• where all functions are fixed at code generation time and do not need extra real-time
data 𝑝;

• with no lower (upper) bounds for variable 𝑧𝑘,𝑖, then 𝑧𝑖 ≡ −∞(𝑧𝑖 ≡ +∞);

• without nonlinear inequalities ℎ;

• with 𝑁 = 1 (single stage problem), then the inter-stage equality can be omitted;

• that optimize over the initial value 𝑧init and do not include the initial equality;

• that optimize over the final value 𝑧final final and do not include the final equality.

• mixed-integer nonlinear programs, where some variables are declared as integers. See
Section Mixed-integer nonlinear solver for more information about the MINLP solver.

9.1.4 Function evaluations

The FORCESPRO NLP solver requires external functions to evaluate:

• the cost function terms 𝑓𝑘(𝑧𝑘) and their gradients ∇𝑓𝑘(𝑧𝑘),

• the dynamics 𝑐𝑘(𝑧𝑘) and their Jacobians ∇𝑐𝑘(𝑧𝑘), and

• the inequality constraints ℎ𝑘(𝑧𝑘) and their Jacobians ∇ℎ𝑘(𝑧𝑘).

The FORCESPRO code generator supports the following ways of supplying these functions:

1. Automatic C-code generation of these functions from MATLAB using a supported au-
tomatic differentiation (AD) tool, such as CasADi. This happens automatically in the back-
ground, as long as the AD tool is found on your system. By doing so, the user does not need
to adhere to any tool-specific syntax but can use standard MATLAB commands to define the
necessary functions instead (which are then automatically converted to match the speficics
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of the chosen AD tool). This is the recommended way of getting started with FORCESPRO
NLP. See Section 9.2 to learn how to use this approach.

2. C-functions (source files). These can be hand-coded, or generated by any automatic dif-
ferentiation tool. See Section 9.5 for details on how to provide own function evaluations and
derivatives to FORCESPRO.

9.2 Expressing the optimization problem in code

When solving nonlinear programs of the type in Section 9.1.1, FORCESPRO requires the func-
tions 𝑓, 𝑐, ℎ and their derivatives (Jacobians) to be evaluated in each iteration. There are two
ways for accomplishing this: either implement all function evaluations in C by some other
method (by hand or by another automatic differentiation tool), or use an AD tool integrated
with FORCESPRO, such as the open-source package CasADi (see Automatic differentiation
tool for a list of all supported tools). This is the easiest option to quickly get started with solv-
ing NLPs, and it generates efficient code. However, if you prefer other AD tools, see Section
9.5 to learn how to provide your own derivatives to FORCESPRO NLP solvers. This section will
describe the CasADi-based approach in detail, using either the MATLAB or the Python client
of FORCESPRO. Please note that even though both the MATLAB and the Python client are
intended to behave largely identical, there are some differences between the two clients. For
details, refer to Differences between the MATLAB and the Python client.

9.2.1 Model Initialization

Model Initialization in Matlab

In the MATLAB high-level interface, the formulation of the optimization problem is given
through a simple structure array. In the following, we will describe the problem in such an ar-
ray named model. It is advisable to zero-initialize this variable at the beginning of your script
such that no values set in previous iterations of your script interfere with this run:

model = {}

Model Initialization in Python

In the high-level Python interface, optimization problems are described through objects of
different types, depending on the problem. The following classes are available:

• SymbolicModel - Allows you to describe your optimization problem using regular
Python functions. These functions will be evaluated symbolically by CasADi to create
optimized C code. Note that this model is meant to be used for nonlinear models. If you
wish to express a convex model symbolically, consider using the ConvexSymbolicModel
or forcing generation of a nonconvex solver by seting the option forcenonconvex to True.

• ExternalFunctionModel - Enables more flexibility in describing nonlinear problems by
allowing any external function to be used as objective function and constraints. This
requires C code or already compiled code (object files or shared libraries) from any lan-
guage. The approach using external function evaluations for your objective function and
constraints is described in External function evaluations in C, including the required call
signature of the callback function.

• ConvexSymbolicModel - FORCESPRO can generate different solvers for convex prob-
lems.

Whichever model you choose, it can be initialized with no arguments, or with a single argu-
ment denoting the number of stages 𝑁 in the problem:
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import forcespro.nlp
model = forcespro.nlp.SymbolicModel(50)

Note that most symbolic problem descriptions will also require the Numpy and CasADi pack-
ages, so it is a good idea to import them at the beginning:

import numpy as np
import casadi

9.2.2 Dimensions

In order to define the dimensions of the stage variables 𝑧𝑖, the number of equality and in-
equality constraints and the number of real-time parameters use the following fields (prop-
erties) in the client:

Matlab

Python

model.N = 50; % length of multistage problem
model.nvar = 6; % number of stage variables
model.neq = 4; % number of equality constraints
model.nh = 2; % number of nonlinear inequality constraints
model.npar = 0; % number of runtime parameters

model.N = 50 # not required if already specified in initializer
model.nvar = 6 # number of stage variables
model.neq = 4 # number of equality constraints
model.nh = 2 # number of nonlinear inequality constraints
model.npar = 0 # number of runtime parameters

If the dimensions vary for different stages use arrays of length 𝑁 . See Section 9.2.7 for an
example.

9.2.3 Objective

The high-level interface allows you to define the objective function using a handle to a MAT-
LAB or Python function that evaluates the objective. This function is called with the variables
of one stage as its first argument, i.e. a vector of model.nvar entries. FORCESPRO will pro-
cess the given function symbolically and generate the necessary C code to be included in the
solver.

Matlab

Python

model.objective = @eval_obj; % handle to objective function

model.objective = eval_obj # eval_obj is a Python function

For instance, the function could be:

Matlab

Python
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function f = eval_obj ( z )
F = z(1);
s = z(2);
y = z(4);
f = -100*y + 0.1*F^2 + 0.01* s^2;

end

def eval_obj(z):
F = z[0]
s = z[1]
y = z[3]
return -100*y + 0.1*F**2 + 0.01*s**2

If the cost function varies for different stages use a cell array of function handles of length 𝑁
in MATLAB, or a list of function handles in Python. See Section 9.2.7 for an example.

Note: Python and MATLAB use different indexing bases. The first element of any variable
has index 1 in MATLAB, whereas it is accessed at offset 0 in Python!

The objective evaluation function can optionally accept an additional argument p which
serves as a run-time parameter. In order to be able to change the terms in the cost func-
tion during runtime, one can define the objective function as:

Matlab

Python

function f = eval_obj ( z, p )
F = z(1);
s = z(2);
y = z(4);
f = -100*y + p(1)*F^2 + p(2)* s^2;

end

def eval_obj(z, p):
F = z[0]
s = z[1]
y = z[3]
return -100*y + p[0]*F**2 + p[1]*s**2

The length of this additional parameter vector in each stage is given by model.npar.

9.2.4 Equalities

Discrete-time

For discrete-time dynamics, one can define a handle to a function evaluating 𝑐 as shown
below. The selection matrix𝐸 that determines which variables are affected by the inter-stage
equality must also be filled. For performance reasons, it is recommended to order variables
such that the selection matrix has the following structure:

Matlab

Python

model.eq = @eval_dynamics; % handle to inter-stage function
model.E = [zeros(4,2), eye(4)]; % selection matrix
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model.eq = eval_dynamics # handle to inter-stage function
model.E = np.concatenate([np.zeros((4, 2)), np.eye(4)], axis=1) # selection matrix

If the equality constraint function varies for different stages use a cell array (or list in Python)
of function handles of length 𝑁 − 1, and similarly for 𝐸𝑘 . See Section 9.2.7 for an example.

Continuous-time

For continuous-time dynamics, FORCESPRO requires you to describe the dynamics of the
system in the following form:

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑝)

where 𝑥 are the states of the system, 𝑢 are the inputs and 𝑝 a vector of parameters, e.g. the
mass or inertia. The selection matrix 𝐸 determines which components of the stage variable
𝑧𝑖 are to be considered state 𝑥 or input 𝑢 in this representation.

For example, let’s assume that the system to be controlled has the dynamics:

𝑥̇ = 𝑝1𝑥1𝑥2 + 𝑝2𝑢

In order to discretize the system for use with FORCESPRO we have to:

1. Implement the continuous-time dynamics as a function:

Matlab

Python

function xdot = continous_dynamics(x, u, p)
xdot = p(1)*x(1)*x(2) + p(2)*u;

end

def continuous_dynamics(x, u, p):
return p[0]*x[0]*x[1] + p[1]*u[0]

Note that in general the parameter vector p can be omitted if there are no parameters. You
can also implement short functions as anonymous function handles:

Matlab

Python

continous_dynamics_anonymous = @(x,u,p) p(1)*x(1)*x(2) + p(2)*u;

continuous_dynamics_anonymous = lambda x, u, p: p[0]*x[0]*x[1] + p[1]*u[0]

2. Tell FORCESPRO that you are using continuous-time dynamics by setting the
continuous_dynamics field of the model to a function handle to one of the functions above:

Matlab

Python

model.continuous_dynamics = @continuous_dynamics;

model.continuous_dynamics = continuous_dynamics

or, if you are using anonymous functions:

Matlab

Python
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model.continuous_dynamics = @continuous_dynamics_anonymous;

model.continuous_dynamics = continuous_dynamics_anonymous

3. Use the selection matrix 𝐸 to link the stage variables 𝑧𝑖 with the states 𝑥 and inputs 𝑢 of the
continuous dynamics function:

Matlab

Python

model.E = [zeros(2, 1), eye(2)]

model.E = np.concatenate([np.zeros((2, 1)), np.eye(2)], axis=1)

Components of 𝑧𝑖 are considered as state variables 𝑥 according to the order prescribed by the
selection matrix. If an entire 𝑘-th column of the selection matrix is zero, the 𝑘-th component
of 𝑧𝑖 is not governed by a dynamic equation and thus considered as input 𝑢.

4. Choose one of the integrator functions from the Integrators section (the default is ERK4):

Matlab

Python

codeoptions.nlp.integrator.type = 'ERK2';
codeoptions.nlp.integrator.Ts = 0.1;
codeoptions.nlp.integrator.nodes = 5;

codeoptions.nlp.integrator.type = 'ERK2'
codeoptions.nlp.integrator.Ts = 0.1
codeoptions.nlp.integrator.nodes = 5

where the integrator type is set using the type field of the options struct codeoptions.nlp.
integrator. The field Ts determines the absolute time between two integration intervals,
while nodes defines the number of intermediate integration nodes within that integration
interval. In the example above, we use 5 steps to integrate for 0.1 seconds, i.e. each integration
step covers an interval of 0.02 seconds.

9.2.5 Initial and final conditions

The indices affected by the initial and final conditions can be set as follows:

Matlab

Python

model.xinitidx = 3:6; % indices affected by initial condition
model.xfinalidx = 5:6; % indices affected by final condition

model.xinitidx = range(2, 6) # indices affected by the initial condition
model.xfinalidx = range(4, 6) # indices affected by the final condition

Note: Python and MATLAB use different indexing bases. The first variable in a stage has
index 1 in MATLAB, whereas it is accessed at offset 0 in Python! Further note that Python’s
range does not include the upper limit, thus:

list(range(2, 6)) == [2, 3, 4, 5] # does not include upper limit
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9.2.6 Inequalities

A function evaluating nonlinear inequalities can be provided in a similar way, for example:

Matlab

Python

function h = eval_const(z)
x = z(3);
y = z(4);
h = [x^2 + y^2;

(x+2)^2 + (y-2.5)^2 ];
end

def eval_const(z):
x = z[2]
y = z[3]
return np.array([x**2 + y**2;

(x+2)**2 + (y-2.5)**2])

Note: For Python installations with Numpy version 1.20 onwards it is advised to use CasADi ar-
rays and CasADi functions (where available) for the implementation of the functions assigned
to: model.objective, model.eq, model.ineq, model.continous_dynamics for the problem
formulation in order to ensure maximum compatibility between CasADi and the FORCE-
SPRO Python client.

The simple bounds and the nonlinear inequality bounds can have +inf and -inf elements,
but must be the same length as the field nvar and nh, respectively:

Matlab

Python

model.ineq = @eval_const; % handle to nonlinear constraints
model.hu = [9, +inf]; % upper bound for nonlinear constraints
model.hl = [1, 0.95^2]; % lower bound for nonlinear constraints
model.ub = [+5, +1, 0, 3, 2, +pi]; % simple upper bounds
model.lb = [-5, -1, -3, -inf, 0, 0]; % simple lower bounds

model.ineq = eval_const # handle to nonlinear constraints
model.hu = [9, +float('inf')] # upper bound for nonlinear
→˓constraints
model.hl = [1, 0.95**2] # lower bound for nonlinear
→˓constraints
model.ub = [+5, +1, 0, 3, 2, +np.pi] # simple upper bounds
model.lb = [-5, -1, -3, -float('inf'), 0, 0] # simple lower bounds

Note: While the FORCESPRO Python client does not require you to use numpy arrays, we
encourage their use for vector- and matrix-valued properties of the model, as it simplifies
calculations for the user. Therefore, any of the above properties can also be set to Numpy
arrays instead of lists. If lists are given, these are converted to Numpy arrays internally.

If the constraints vary for different stages, use cell arrays of length 𝑁 for any of the quantities
defined above. See Varying dimensions, parameters, constraints, or functions section for an
example.

Bounds model.lb and model.ub can be made parametric by leaving said fields empty and
using the model.lbidx and model.ubidx fields to indicate on which variables lower and up-
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per bounds are present. The numerical values will then be expected at runtime. For example,
to set parametric lower bounds on states 1 and 2, and parametric upper bounds on states 2
and 3, use:

Matlab

Python

% Lower bounds are parametric (indices not mentioned here are -inf)
model.lbidx = [1 2]';

% Upper bounds are parametric (indices not mentioned here are +inf)
model.ubidx = [2 3]';

% lb and ub have to be empty when using parametric bounds
model.lb = [];
model.ub = [];

# Lower bounds are parametric (indices not mentioned here are -inf)
model.lbidx = [0, 1]

# Upper bounds are parametric (indices not mentioned here are +inf)
model.ubidx = [1, 2]

# There is no need to specify model.lb or model.ub to empty lists if
# model.lbidx or model.ubidx are set, and any non-empty value is disallowed.

and then specify the exact values at runtime through the fields lb01–lbN and ub01–ubN:

Matlab

Python

% Specify lower bounds
problem.lb01 = [0 0]';
problem.lb02 = [0 0]';
% ...

% Specify upper bounds
problem.ub01 = [3 2]';
problem.ub02 = [3 2]';
% ...

# Specify lower bounds
problem["lb01"] = [0, 0]
problem["lb02"] = [0, 0]

# Specify upper bounds
problem["ub01"] = [3, 2]
problem["ub02"] = [3, 2]

Tip: One could use problem.(sprintf('lb%02u',i)) in an i-indexed loop to set the para-
metric bounds more easily in the MATLAB client. Similarly, the parametric bounds for the
stages can be set using problem["{:02d}".format(i+1)] in Python. Alternatively, consider
using the option stack_parambounds, described below.

If the model.lbidx and model.ubidx fields vary for different stages use cell arrays of length
𝑁 . From Release 3.0.1, the parametric bounds can be stacked on one same array covering
all stages. To enable this behaviour, users need to set the following code-generation option:

Matlab
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Python

codeoptions.nlp.stack_parambounds = 1;

codeoptions.nlp.stack_parambounds = True

This option is effective for both the PDIP_NLP and SQP_NLP solve methods and works with
bounds on variables and inequalities. At run-time, users can then write

Matlab

Python

% Lower and upper bounds stacked over all stages
problem.lb = [0 0 0 0 ...];
problem.ub = [3 2 3 2 ...];

# Lower and upper bounds stacked over all stages
problem["lb"] = [0, 0, 0, 0, ...]
problem["ub"] = [3, 2, 3, 2, ...]

Alternatively, if you want to use the same bounds across all stages:

Matlab

Python

problem.lb = repmat([0, 0], 1, model.N);
problem.ub = repmat([3, 2], 1, model.N);

problem["lb"] = np.tile([0, 0], (model.N,))
problem["ub"] = np.tile([3, 2], (model.N,))

9.2.7 Variations

Varying dimensions, parameters, constraints, or functions

The example described above has the same dimensions, bounds and functions for the whole
horizon. One can define varying dimensions using arrays and varying bounds and functions
using MATLAB cell arrays or Python lists. For instance, to remove the first and second variables
from the last stage one could write the following:

Matlab

Python

for i = 1:model.N-1
model.nvar(i) = 6;
model.objective{i} = @(z) -100*z(4) + 0.1*z(1)^2 + 0.01*z(2)^2;
model.lb{i} = [-5, -1, -3, 0, 0, 0];
model.ub{i} = [+5 , +1, 0, 3, 2, +pi];
if i < model.N-1
model.E{i} = [zeros(4, 2), eye(4)];

else
model.E{i} = eye(4);

end
end

model.nvar(model.N) = 4;
model.objective{model.N} = @(z) -100*z(2);

(continues on next page)
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(continued from previous page)

model.lb{model.N} = [-3, 0, 0, 0];
model.ub{model.N} = [ 0, 3, 2, +pi];

model = forcespro.nlp.SymbolicModel(50) # to set values stage-wise, the model
→˓must be initialized this way

for i in range(0,model.N-1):
model.nvar[i] = 6
model.objective[i] = lambda z: -100*z[3] + 0.1*z[0]**2 + 0.01*z[1]**2
model.lb[i] = [-5, -1, -3, 0, 0, 0]
model.ub[i] = [+5 , +1, 0, 3, 2, +np.pi]
if i < model.N-2:
model.E[i] = np.concatenate([np.zeros(4, 2), np.eye(4)], axis=1)

else:
model.E[i] = np.eye(4)

model.nvar[-1] = 4
model.objective[-1] = lambda z: -100*z[1]
model.lb[-1] = [-3, 0, 0, 0]
model.ub[-1] = [ 0, 3, 2, +np.pi]

It is also typical for model predictive control problems (MPC) that only the last stage differs
from the others (excluding the initial condition, which is handled separately). Instead of defin-
ing cell arrays as above for all stages, FORCESPRO offers the following shorthand notations
that alter the last stage:

• nvarN: number of variables in last stage

• nparN: number of parameters in last stage

• objectiveN: objective function for last stage

• EN: selection matrix 𝐸 for last stage update

• nhN: number of inequalities in last stage

• ineqN: inequalities for last stage

Add any of these fields to the model struct/object to override the default values, which is to
make everything the same along the horizon. For example, to add a terminal cost that is a
factor 10 higher than the stage cost:

Matlab

Python

model.objectiveN = @(z) 10*model.objective(z);

model.objectiveN = lambda z: 10*model.objective(z)

Providing analytic derivatives

The algorithms inside FORCESPRO need the derivatives of the functions describing the ob-
jective, equality and inequality constraints. The code generation engine uses algorithmic dif-
ferentiation (AD) to compute these quantities. Instead, when analytic derivatives are available,
the user can provide them using the fields model.dobjective, model.deq, and model.dineq.

Note that the user must be particularly careful to make sure that the provided functions and
derivatives are consistent, for example:

Matlab

Python
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model.objective = @(z) z(3)^2;
model.dobjective = @(z) 2*z(3);

model.objective = lambda z: z[2]**2
model.dobjective = lambda z: 2*z[2]

The code generation system will not check the correctness of the provided derivatives.

9.2.8 Single precision callbacks

Evaluating objective function, dynamics and constraints as well as their respective deriva-
tives may take a significant part of the overall solution time (both total and per iteration). In
such situations solution time and memory consumption may be sped up by evaluating those
functions in single, rather than double precision arithmetic. This can be done by specifying

Matlab

Python

codeoptions.callback_floattype = 'float';

# not yet supported

Note that this will allow to run the NLP solver in mixed-precision arithmetic, where the call-
backs are evaluated in single precision, but the overall algorithm in double precision. In order
for this to work well, all callbacks functions need to be numerically well-posed and overall
accuracy requirements of the solution must not be too high. In particular, when using that
feature, you may need to reduce some of the accuracy settings (such as codeoptions.nlp.
TolStat) by one or two orders of magnitude, see Accuracy requirements.

Note: Single precision callbacks are currently supported for legacy and chainrule integrators,
but not yet for VDE integrators. Also, this features is currently only available via the Matlab
client.

9.3 Generating a solver

In addition to the definition of the NLP, solver generation requires an (optional) set of options
for customization (see the Solver Options section for more information). Using the default
solver options we generate a solver using:

Matlab

Python

% Get the default solver options
codeoptions = getOptions('FORCESNLPsolver');

% Generate solver
FORCES_NLP(model, codeoptions);

# Get the default solver options
options = forcespro.CodeOptions('FORCESNLPsolver')

# Generate solver for previously initialized model
solver = model.generate_solver(options)
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As the solver is generated, several files are downloaded into the current working directory
of the calling script, including the compiled solver itself and MATLAB/Python interfaces for
calling it.

Note: In the Python client, generate_solver() returns a solver object. This object can be used
to call the solver. To get a solver object for a previously generated solver in some directory
/path/to/solver, use:

import forcespro.nlp
solver = forcespro.nlp.Solver.from_directory('/path/to/solver')

9.3.1 Declaring outputs

By default, the solver returns the solution vector for all stages as multiple outputs. Alterna-
tively, the user can pass a third argument to the function FORCES_NLPwith an array that spec-
ifies what the solver should output. For instance, to define an output, named u0, to be the
first two elements of the solution vector at stage 1, use the following commands:

Matlab

Python

output1 = newOutput('u0', 1, 1:2);
FORCES_NLP(model, codeoptions, output1);

output_1 = ("u0", 0, [0, 1], "")
model.generate_solver(options, [output_1])

Additionally, you can request that the solver returns the solution vectors for all different stages
“stacked” together into a single vector, say called sol, by using the following commands:

Matlab

Python

output1 = newOutput('sol');
FORCES_NLP(model, codeoptions, output1);

output1 = ("sol", [], [])
model.generate_solver(options, [output1])

Important: When using the MINLP solver and defining outputs, all integer variables need to
be specified as custom outputs.

The dual variables at the solution returned by FORCESPRO provide useful information on
the problem sensitivity. They can be exported from the nonlinear solver as well by giving the
maps2const field one of the following values:

• ‘nl_eq_dual’ for the dual variables associated to equality constraints

• ‘nl_lb_var_dual’ for the dual variables associated to lower bounds on variables

• ‘nl_ub_var_dual’ for the dual variables associated to upper bounds on variables

• ‘nl_ip_ineq_dual’ for the dual variables associated to nonlinear inequalities

• ‘nl_ineq_slack’ for the dual variables associated to slacks on nonlinear inequalities.
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An example of exporting the marginals associated to nonlinear equalities is shown in the code
snippet below.

outputs(4) = newOutput('dual_eq0', 1:model.N, 1:2, 'nl_eq_dual');

9.4 Calling the solver

After code generation has been successful, one can obtain information about the real-time
data needed to call the generated solver by typing:

Matlab

Python

help FORCESNLPsolver

# Assuming `solver` is the return value of a `model.generate_solver()` call
solver.help()

In Python, a previously generated solver can be loaded as follows:

import forcespro.nlp
solver = forcespro.nlp.Solver.from_directory("/path/to/generated/solver/")
solver.help()

9.4.1 Initial guess

The FORCESPRO NLP solver solves NLPs to local optimality, hence the resulting optimal so-
lution depends on the initialization of the solver. One can also choose another initialization
point when a better guess is available. The following code sets the initial point to be in the
middle of all bounds:

Matlab

Python

x0i = model.lb +(model.ub - model.lb)/2;
x0 = repmat(x0i', model.N, 1);
problem.x0 = x0;

xi = (model.lb + model.ub) / 2 # assuming lb and ub are numpy arrays
x0 = np.tile(xi, (model.N,))
problem = {"x0": x0}

9.4.2 Initial and final conditions

If there are initial and/or final conditions on the optimization variables, the solver will expect
the corresponding runtime fields:

Matlab

Python

problem.xinit = model.xinit;
problem.xfinal = model.xfinal;
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problem = {"xinit": np.array([1, 2, 3]),
"xfinal": np.array([4, 5, 6])}

Note that the Python client does not allow setting model.xinit or model.xfinal properties, as
those are run-time parameters not needed at solver generation time.

9.4.3 Real-time parameters

Whenever there are any runtime parameters defined in the problem, i.e. the field npar is not
zero, the solver will expect the following field containing the parameters for all the 𝑁 stages
stacked in a single vector:

Matlab

Python

problem.all_parameters = repmat(1.0, model.N, 1);

problem["all_parameters"] = np.tile(1.0, (model.N,))

9.4.4 Tolerances as real-time parameters

From FORCESPRO 2.0 onwards, the NLP solver tolerances can be made real-time parameters,
meaning that they do not need to be set when generating the solver but can be changed at
run-time when calling the generated solver. The code-snippet below shows how to make the
tolerances on the gradient of the Lagrangian, the equalities, the inequalities and the comple-
mentarity condition parametric. Essentially, when the tolerances are declared nonpositive at
code-generation, the corresponding run-time parameter is created in the solver.

Matlab

Python

codeoptions.nlp.TolStat = -1; % Tolerance on gradient of Lagrangian
codeoptions.nlp.TolEq = -1; % Tolerance on equality constraints
codeoptions.nlp.TolIneq = -1; % Tolerance on inequality constraints
codeoptions.nlp.TolComp = -1; % Tolerance on complementarity

codeoptions.nlp.TolStat = -1 # Tolerance on gradient of Lagrangian
codeoptions.nlp.TolEq = -1 # Tolerance on equality constraints
codeoptions.nlp.TolIneq = -1 # Tolerance on inequality constraints
codeoptions.nlp.TolComp = -1 # Tolerance on complementarity

Once the tolerance has been declared nonpositive and the solver has been generated, the
corresponding parameter can be set at run-time as follows:

Matlab

Python

problem.ToleranceStationarity = 1e-1;
problem.ToleranceEqualities = 1e-1;
problem.ToleranceInequalities = 1e-1;
problem.ToleranceComplementarity = 1e-1;

problem["ToleranceStationarity"] = 1e-1
problem["ToleranceEqualities"] = 1e-1
problem["ToleranceInequalities"] = 1e-1
problem["ToleranceComplementarity"] = 1e-1
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Tip: We do not recommend changing the tolerance on the complementarity condition since
it is used internally to update the barrier parameter. Hence loosening it may hamper the
solver convergence.

9.4.5 Exitflags and quality of the result

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it:

Matlab

Python

[output, exitflag, info] = FORCESNLPsolver(problem);

output, exitflag, info = solver.solve(problem)

The possible exitflags are documented in Table 9.1. The exitflag should always be checked
before continuing with program execution to avoid using spurious solutions later in the code.
Check whether the solver has exited without an error before using the solution. For example,
in MATLAB, we suggest to use an assert statement:

Matlab

Python

assert(exitflag == 1, 'Some issue with FORCESPRO solver');

assert exitflag == 1, "Some issue with FORCESPRO solver"

Table 9.1: Exitflag values
Exitflag Description
1 Local optimal solution found (i.e. the point satisfies the KKT optimality condi-

tions to the requested accuracy).
0 Maximum number of iterations reached. You can examine the value of opti-

mality conditions returned inside the info struct by FORCESPRO to decide
whether the point returned is acceptable.

-4 Wrong number of inequalities input to solver.
-5 Error occured during matrix factorization.
-6 NaN or INF occurred during functions evaluations.
-7 The solver could not proceed. Most likely cause is that the problem is infea-

sible.Try formulating a problem with slack variables (soft constraints) to avoid
this error.

-8 The internal QP solver could not proceed. This exitflag can only occur when us-
ing the Sequential quadratic programming algorithm. The most likely cause
is that an infeasible QP or a numerical unstable QP was encountered. Try in-
creasing the hessian regularization parameter reg_hessian if this exitflag is
encountered (see SQP specific codeoptions).

-10 NaN or INF occurred during evaluation of functions and derivatives. If this oc-
curs at iteration zero, try changing the initial point. For example, for a cost func-
tion 1/

√
𝑥 with an initialization 𝑥0 = 0, this error would occur.

-11 Invalid values in problem parameters.
-100 License error. This typically happens if you are trying to execute code that has

been generated with a Simulation license of FORCESPRO on another machine.
Regenerate the solver using your machine.
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Besides the exitflag, the solver also returns an information structure containing detailed KPIs
on the solver performance. All its entries are listed and explained in Table 9.2. Those values
may also be useful in case the solver exitflag has been 0, which means the solver did not
fail but reached the maximum number of iterations. In that case, one should at least check
whether the “solution” returned is sufficiently feasible. This can be done by examining res_eq
and res_ineq, respectively, to check whether equality and inequality constraints are satisfied
up to a sufficiently small tolerance. The exact tolerances to check may be strongly application
dependent.

Note: Applying a premature “solution” returned along with an exitflag of 0 to control your
system may have undesired effects to the behaviour of that system. Only do so if you fully
understand what you are doing.

Table 9.2: Info struct entries
Fieldname Description
it Number of solver iterations that led to this result
res_eq Maximum norm of equality constraint residual
res_ineq Maximum norm of inequality constraint residual
rsnorm Maximum norm of stationarity condition
rcompnorm Maximum norm of violations of the complementarity conditions
pobj Primal objective value (as provided by the user)
mu Duality measure
solvetime Time needed to run the solver (wall clock time)
fevalstime Time needed just for function evaluations of all user callbacks inside the

solver (wall clock time)

9.5 External function evaluations in C

This approach allows the user to integrate existing efficient C implementations to evaluate the
required functions and their derivatives with respect to the stage variable. This gives the user
full flexibility in defining the optimization problem. In this case, the functions do not neces-
sarily have to be differentiable, although the convergence of the algorithm is not guaranteed
if they are not. When following this route the user does not have to provide MATLAB code
to evaluate the objective or constraint functions. However, the user is responsible for making
sure that the provided derivatives and function evaluations are coherent. The FORCESPRO
NLP code generator will not check this.

9.5.1 Interface

Expected function signature

There are two ways in which a user can supply custom functions written in C:

• Either she can supply all functions (model.objective, model.eq, model.ineq etc.)

• Or she can supply one or a few of these together with its differential/Jacobian.

Depending on the case, the user will have to supply different information when generating
a FORCESPRO solver.

When supplying all functions, the user will have supply a single C function having the follow-
ing signature:
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void myfunctions (
double *x, /* primal vars */
double *y, /* eq. constraint multiplers */
double *l, /* ineq . constraint multipliers */
double *p, /* runtime parameters */
double *f, /* objective function ( incremented in this function ) */
double *nabla_f , /* gradient of objective function */
double *c, /* dynamics */
double *nabla_c , /* Jacobian of the dynamics ( column major ) */
double *h, /* inequality constraints */
double *nabla_h , /* Jacobian of inequality constraints ( column major ) */
double *H, /* Hessian ( column major ) */
int stage, /* stage number (0 indexed ) */
int iteration, /* Solver iteration count */
int threadID /* Thread id */

)

If instead the user wants to supply just a single function she will have to supply a single C
function having the following signature:

void function (
const double * const x, /* primal vars */
const double * const p, /* runtime parameters */
double * const zeroOrderFcn, /* Zero order function */
double * const firstOrderFcn , /* first order Fcn */
const int stage, /* stage number (0 indexed ) */
const int threadID /* thread number */

)

where zeroOrderFcn and firstOrderFcn denote the function which the user wants to sup-
ply, together with its differential/Jacobian respectively. E.g. if the user were to add the objec-
tive function and its differential externally, the function might look as follows:

void objective (
const double * const x, /* primal vars */
const double * const p, /* runtime parameters */
double * const obj, /* objective function */
double * const nabla_obj, /* jacobian of objective fcn */
const int stage, /* stage number (0 indexed ) */
const int threadID /* thread number */

)

Note: External C-functions should have the same name as the file it is contained in, minus
the file extension. E.g. in the above example the source file containing the definition of the
function objective would have to have the name objective.c. If all functions are provided
as external C functions through the FORCESPRO Python client, then one can provide a dif-
ferent name for the function and the file.

Custom data structures as parameters

If you have an advanced data structure that holds the user-defined run-time parameters,
and you do not want to serialize it into an array of doubles to use the interface above, you can
invoke the option:

codeoptions.customParams = 1;
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options.customParams = 1

When doing this, it is important to note that run-time parameters can only be passed to ex-
ternally provided functions. In particular, if some but not all function evaluations are provided
externally, one will have to set model.npar = 0. When using custom parameters, if all func-
tions are provided externally, the expected function signature is:

void myfunctions (
double *x, /* primal vars */
double *y, /* eq. constraint multiplers */
double *l, /* ineq . constraint multipliers */
void *p, /* runtime parameters (passed as void pointer) */
double *f, /* objective function ( incremented in this function ) */
double *nabla_f , /* gradient of objective function */
double *c, /* dynamics */
double *nabla_c , /* Jacobian of the dynamics ( column major ) */
double *h, /* inequality constraints */
double *nabla_h , /* Jacobian of inequality constraints ( column major ) */
double *H, /* Hessian ( column major ) */
int stage, /* stage number (0 indexed ) */
int iteration, /* Solver iteration count */
int threadID /* Thread id */

)

If instead only some of the functions are provided, the expected function signature of these
is

void function (
const double * const x, /* primal vars */
void * const p, /* runtime parameters passed as void pointer */
double * const zeroOrderFcn, /* Zero order function */
double * const firstOrderFcn , /* first order Fcn */
const int stage, /* stage number (0 indexed ) */
const int threadID /* thread number */

)

At run time you can then pass arbitrary data structures to your own function by setting the
pointer in the params struct:

myData p; /* define your own parameter structure */
/* ... */ /* fill it with data */

/* Set parameter pointer to your data structure */
mySolver_params params; /* Define solver parameters */
params.customParams = &p;

/* Call solver (assuming everything else is defined) */
mySolver_solv(&params, &output, &info, stdout, &external_func);

Note: Setting customParams to 1 will disable building high-level interfaces. Only C header-
and source files will be generated. As a consequence, if CasADi is used to generate some of
the function evaluations, the generated source code will have to be compiled by the user.

Note: When using custom parameters, generating callback code automatically is only sup-
ported for CasADi 3.5.x only.
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9.5.2 Supplying function evaluation information

In MATLAB, if the user wants to supply all functions externally she can let the code generator
know about the path to the C files implementing the necessary function as follows:

model.extfuncs = 'C/myfunctions.c';

Alternatively she could supply either one of the functions model.objective, model.eq or
model.ineq together with its differential by specifying the path to the corresponding C
source file in the corresponding field of model.extfuncs as follows:

model.extfuncs.objective = 'C/myobjective.c'; % adding model.objective externally %
model.extfuncs.dynamics = 'C/mydynamics.c'; % adding model.eq externally %
model.extfuncs.inequalities = 'C/myinequalities.c'; % adding model.ineq externally
→˓%

As noted above, FORCESPRO derives the function name used for the callback from the file
name; the function must therefore have the same name as the file in which it is contained.

In Python, if the user wishes to add ALL functions externally she would use a ExternalFunc-
tionModel as follows:

model = forcespro.nlp.ExternalFunctionModel(50)
model.add_auxiliary(["helper_functions.c", "compiled_helper_functions.obj"])
model.set_main_callback("myfunctions.c", function="myfunctions")

Herein, the add_auxiliary() method is used to add any helper C source files or object files
that should be compiled and linked against, and the set_main_callback() function is used to
define the path to a C source file or compiled object file, as well as the name of an exported
function that conforms to the call signature given above. This function will be used to evaluate
any nonlinear constraints and the objective function.

Alternatively, in order to add a single function externally the user would use the Symbol-
icModel and add the C source files containing code for the external functions through
model.extfuncs as follows:

model = forcespro.nlp.SymbolicModel(50)
model.extfuncs.objective = "myobjective.c"
model.extfuncs.dynamics = "mydynamics.c"
model.extfuncs.inequalities = "myinequalities.c"
model.add_c_source("extra_source.c")

where the extra_source.c are additional C source files needed for evaluating some or all of the
external functions.

9.5.3 Rules for function evaluation code

The contents of the function have to follow certain rules. We will use the following example
to illustrate them:

/* cost */
if (f)
{ /* notice the increment of f */

(*f) += -100*x[3] + 0.1* x[0]*x[0] + 0.01*x [1]*x [1];
}
/* gradient - only nonzero elements have to be filled in */
if ( nabla_f )
{

nabla_f [0] = 0.2*x[0];
nabla_f [1] = 0.02*x[1];

(continues on next page)
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(continued from previous page)

nabla_f [3] = -100;
}

/* eq constr */
if (c)
{

vehicle_dyanmics (x, c);
}
/* jacobian equalities ( column major ) */
if ( nabla_c )
{

vehicle_dyanmics_jacobian (x, nabla_c );
}

/* ineq constr */
if (h)
{

h[0] = x [2]*x[2] + x[3]*x [3];
h[1] = (x[2]+2)*(x[2]+2) + (x[3] -2.5)*(x[3] -2.5);

}
/* jacobian inequalities ( column major )
- only non - zero elements to be filled in */
if ( nabla_h )
{

/* column 3 */
nabla_h [4] = 2*x [2];
nabla_h [5] = 2*x[2] + 4;
/* column 4 */
nabla_h [6] = 2*x [3];
nabla_h [7] = 2*x[3] - 5;

}

Notice that every function evaluation is only carried out if the corresponding pointer is not
null. This is used by the FORCESPRO NLP solver to call the same interface with different
pointers depending on the functions that it requires.

9.5.4 Matrix format

Matrices are assumed to be stored in dense column major format. However, only the non-
zero components need to be populated, as FORCESPRO NLP makes sure that the arrays are
initialized to zero before calling this interface.

9.5.5 Multiple source files

The use of multiple C files is also supported. In the example above, the functions dynamics
and dynamics_jacobian are defined in another file and included as external functions using:

extern void dynamics ( double *x, double *c);
extern void dynamics_jacobian ( double *x, double *J);

In MATLAB, to let the code generator know about the location of these other files use a string
with spaces separating the different files. In Python, use the add_auxiliary() method:

Matlab

Python
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codeoptions.nlp.other_srcs = 'C/dynamics.c';

model.add_auxiliary('C/dynamics.c')

9.5.6 Stage-dependent functions

Whenever the cost function in one of the stages is different from the standard cost function
𝑓 , one can make use of the argument stage to evaluate different functions depending on the
stage number. The same applies to all other quantities.

9.6 Mixed-integer nonlinear solver

From FORCESPRO 1.8.0, mixed-integer nonlinear programs (MINLPs) are supported. This
broad class of problems encompasses all nonlinear programs with some integer decision
variables.

This interface is provided with Variant L of FORCESPRO.

9.6.1 Writing a mixed-integer model

In order to use this feature, the user has to declare lower and upper bounds on all variables
as parametric, as shown in the code below.

Matlab

Python

model.lb = [];
model.ub = [];

model.lbidx = range(0, model.nvar)
model.ubidx = range(0, model.nvar)

The user is then expected to provide lower and upper bounds as run-time parameters.
FORCESPRO switches to the MINLP solver as soon as some variables are declared as inte-
gers in any stage. This information can be provided to FORCESPRO via the intidx array at
every stage. An example is shown below.

Matlab

Python

%% Add integer variables to existing nonlinear model
for s = 1:5

model.intidx{s} = [4, 5, 6];
end

# Add integer variables to existing nonlinear model
for s in range(0, 5):

model.intidx[s] = [3, 4, 5]

In the above code snippet, the user declares variables 4, 5 and 6 (3, 4 and 5 in Python’s zero-
based indexing) as integers from stage 1 to 5 (stages 0 to 4 in Python’s zero-based indexing).
The values that can be taken by an integer variable are derived from its lower and upper
bounds. For instance, if the variable lies between -1 and 1, then it can take integer values -1,
0 or 1. If a variable has been declared as integer and does not have lower or upper bounds,
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FORCESPRO raises an exception during code generation. Stating that a variable has lower
and upper bounds should be done via the arrays lbidx and ubidx. For instance, in the code
below, variables 1 to 6 (0 to 5 in Python) in stage 1 (0) have lower and upper bounds, which
are expected to be provided at run-time.

Matlab

Python

model.lbidx{1} = 1 : 6;
model.ubidx{1} = 1 : 6;

model.lbidx[0] = range(0, 6)
model.ubidx[0] = range(0, 6)

The FORCESPRO MINLP algorithm is based on the well-known branch-and-bound algorithm
but comes with several customization features which generally help for improving perfor-
mance on some models by enabling the user to provide application specific knowledge into
the search process. At every node of the search tree, the FORCESPRO nonlinear solver is called
in order to compute a solution of a relaxed problem. The generated MINLP solver code can
be customized via the options described in Table 9.3, which can be changed before running
the code generation.

One of the salient features of the MINLP solver is that the branch-and-bound search can be
run in parallel on several threads. Therefore the search is split in two phases. It starts with
a sequential branch-and-bound and switches to a parallelizable process when the number
of nodes in the queue is sufficiently high. The node selection strategy can be customized in
both phases, as described in Table 9.3.

Table 9.3: FORCESPRO MINLP solver options
Code generation setting Values Default
minlp.int_gap_tol Any value ≥ 0 0.001
minlp.max_num_nodes Any value ≥ 0 10000
minlp.seq_search_strat 'BEST_FIRST', 'BREADTH_FIRST 'DEPTH_FIRST' 'BEST_FIRST'
minlp.par_search_strat 'BEST_FIRST', 'BREADTH_FIRST', 'DEPTH_FIRST' 'BEST_FIRST'
minlp.max_num_threads Any nonnegative value preferably smaller than 8 4
minlp.output_relaxation 0 or 1 0

• The minlp.int_gap_tol setting corresponds to the final optimality tolerance below
which the solver is claimed to have converged. It is the difference between the objec-
tive incumbent, which is the best integer feasible solution found so far and the lowest
lower bound. As the node problems are generally not convex, it can be expected to be-
come negative. FORCESPRO claims convergence to a local minimum only when the
integrality gap is nonnegative and below the tolerance minlp.int_gap_tol.

• The minlp.max_num_nodes setting is the maximum number of nodes which can be ex-
plored during the search.

• The minlp.seq_search_strat setting is the search strategy which is used to select can-
didate nodes during the sequential search phase.

• The minlp.par_search_strat setting is the search strategy which is used to select can-
didate nodes during the parallelizable search phase.

• The minlp.max_num_threads setting is the maximum number of threads allowed for
a parallel search. The actual number of threads on which the branch-and-bound algo-
rithm can be run can be set as a run-time parameter, as described below.

• The minlp.output_relaxation setting enables users to export the primal outputs of
the root relaxation. With this option set to 1, the server automatically generates one
additional output for every defined output. The name of the root relaxation output is
the name of the output followed by _relax.
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Note: The MINLP solver is currently constrained to run on one thread on MacOS, meaning
that minlp.max_num_threads is automatically set to 1 on MacOS.

Important: When generating a MINLP solver for MacOS the thread local feature (codeop-
tions.threadSafeStorage) is automatically set to 0 so if a dynamic library is used for a MINLP
solver in a MacOS environment then one should not run at the same time more than one
solvers linked to that library. A workaround for this would be to use the static library which is
not bound by this restriction.

The FORCESPRO MINLP solver also features settings which can be set at run-time. These are
the following:

• minlp.numThreadsBnB, the number of threads used to parallelize the search. Its default
value is 1, if not provided by the user.

• minlp.solver_timeout, the maximum amount of time allowed for completing the
search. Its default value is 1.0 seconds, if not set by the user.

• minlp.parallelStrategy, the method used for parallelizing the mixed-integer search
(from FORCESPRO 1.9.0). Value 0 (default) corresponds to a single priority queue shared
between threads. Value 1 corresponds to having each thread managing its own priority
queue.

9.6.2 Mixed-integer solver customization via user callbacks

For advanced users, the mixed-integer branch-and-bound search can be customized after
the rounding and the branching phases. In the rounding phase, an integer feasible solution
is computed after each relaxed problem solve. The user is allowed to modify the rounded solu-
tion according to some modelling requirements and constraints. This can be accomplished
via the postRoundCallback_template.c file provided in the FORCESPRO client. This call-
back is applied at every stage in a loop and updates the relaxed solution stage-wise. It needs
to be provided before code generation, as shown in the following code snippet.

Matlab

Python

%% Add post-rounding callback to existing model
postRndCall = fileread('postRoundCallback_template.c'); % The file name can be
→˓changed by the user
model.minlpPostRounding = postRndCall;

with open('postroundCallback_template.c') as f:
model.minlpPostRounding = f.read()

The branching process can be customized in order to discard some nodes during the search.
To do so, the user is expected to overwrite the file postBranchCallback_template.c and
pass it to FORCESPRO before generating the MINLP solver code.

Matlab

Python

%% Add as post-branching callbacks as you want
postBranchCall_1 = fileread('postBranchCallback_template_1.c');
postBranchCall_2 = fileread('postBranchCallback_template_2.c');
postBranchCall_3 = fileread('postBranchCallback_template_3.c');
model.minlpPostBranching{1} = postBranchCall_1;

(continues on next page)
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(continued from previous page)

model.minlpPostBranching{2} = postBranchCall_2;
model.minlpPostBranching{3} = postBranchCall_3;

# Add as post-branching callbacks as you want
with open('postBranchCallback_template_1.c') as f:

model.minlpPostBranching[0] = f.read()
with open('postBranchCallback_template_2.c') as f:

model.minlpPostBranching[1] = f.read()
with open('postBranchCallback_template_3.c') as f:

model.minlpPostBranching[2] = f.read()

In each of those callbacks, the user is expected to update the lower and upper bounds of
the sons computed during branching given the index of the stage in which the branched
variables lies, the index of this variable inside the stage and the relaxed solution at the parent
node.

9.6.3 Providing a guess for the incumbent

Internally, the mixed-integer branch-and-bound computes an integer feasible solution by
rounding. Moreover, since version 1.9.0, users are allowed to provide an initial guess for the
incumbent. At code-generation, the following options need to be set:

• minlp.int_guess, which tells whether an integer feasible guess is provided by the user
(value 1). Its default value is 0.

• minlp.int_guess_stage_vars, which specifies the indices of the integer variables that
are user-initialized within one stage (MATLAB based indexing). If minlp.int_guess =
1, a parameter int_guessneeds to be set at every stage. An example can be found there
Mixed-integer nonlinear solver: F8 Crusader aircraft.

Another important related option is minlp.round_root. If set to 1, the solution of the root
relaxation is rounded and set as incumbent if feasible. Its default value is 1. The mixed-integer
solver behaviour differs depending on the combinations of options. The different behaviours
are listed below.

• If minlp.int_guess = 0 and minlp.round_root = 1, then the solution of the root re-
laxation is taken as incumbent (if feasible). This is the default behaviour.

• If minlp.int_guess = 1 and minlp.round_root = 0, then the incumbent guess pro-
vided by the user is tested after the root solve. If feasible, it is taken as incumbent. Note
that the user is allowed to provide guesses for a few integers per stage only. In this case,
the other integer variables are rounded to the closest integer.

• If minlp.int_guess = 1 and minlp.round_root = 1, then the rounded solution of the
root relaxation and the user guess are compared. The best integer feasible solution in
terms of primal objective is then taken as incumbent.

This feature is illustrated in Example Mixed-integer nonlinear solver: F8 Crusader aircraft.
The ability of providing an integer guess for the incumbent is a key feature to run the mixed-
integer solver in a receding horizon setting.

9.7 Sequential quadratic programming algorithm

The FORCESPRO real-time sequential quadratic programming (SQP) algorithm allows one
to solve problems of the type specified in the section High-level Interface. The algorithm
iteratively solves a convex quadratic approximations of the (generally non-convex) problem.
Moreover, the solution is stored internally in the solver and used as an initial guess for the next
time the solver is called. This and other features enables the solver to have fast solvetimes
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(compared to the interior point method), particularly suitable for MPC applications where
the sampling time or the computational power of the hardware is small.

Important: The SQP algorithm currently only supports affine inequalities. This means that
all the inequality functions ℎ𝑘, 𝑘 = 1, ..., 𝑁 from (9.1.1) must be affine functions of the variable
𝑧𝑘 (not necessarily of 𝑝𝑘).

Moreover, the SQP algorithm currently does not support problems comprising final equality
constraints (specified via model.xfinalidx).

9.7.1 How to generate a SQP solver

To generate a FORCESPRO sequential quadratic programming real-time iteration solver one
sets

Matlab

Python

codeoptions.solvemethod = 'SQP_NLP';

codeoptions.solvemethod = "SQP_NLP"

(see Generating a solver). In addition to the general code options specified in the previous
section here are some of the important code options one can use to customize the generated
SQP solver.

By default the FORCESPRO SQP solver solves a single convex quadratic approximation.
This accomplishes a fast solvetime compared to a “full” sequential quadratic programming
solver (which solves quadratic approximations to the nonlinear program until a KKT point is
reached). The user might prefer to manually allow the SQP solver to solve multiple quadratic
approximations: By setting

Matlab

Python

codeoptions.sqp_nlp.maxqps = k;

codeoptions.sqp_nlp.maxqps = k

for a positive integer k one allows the solver to solve k quadratic approximations at every call
to the solver. In general, the more quadratic approximations which are solved, the higher the
control performance. The tradeoff is that the solvetime also increases.

9.7.2 The hessian approximation and line search settings

The SQP code generation currently supports two different types of hessian approximations.
A good choice of hessian approximation can often improve the number of iterations required
by the solver and thereby its solvetime. The default option for a SQP solver is the BFGS hessian
approximation. When the objective function of the optimization problem is a least squares
cost it is often benefitial to use the Gauss-Newton hessian approximation instead. To enable
this option one proceeds as specified in the sections Hessian approximation and Gauss-
Newton options. When the Gauss-Newton hessian approximation is chosen one can also
disable the the internal linesearch by setting

Matlab

Python
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codeoptions.sqp_nlp.use_line_search = 0;

options.sqp_nlp.use_line_search = False

A linesearch is required to ensure global convergence of an SQP method, but is not needed
in a real-time context when a Gauss-Newton hessian approximation is used.

Note: One cannot disable the line search when using the BFGS hessian approximation.

9.7.3 Controlling the initial guess at run-time

Upon the first call to the generated FORCESPRO SQP solver one needs to specify a primal
initial guess (problem.x0, see also Initial guess). The default behaviour of the FORCESPRO
SQP solver is to use the solution from the previous call as initial guess in every subsequent
call to it. However, one can also manually set an initial guess in subsequent calls to the solver.
Wether a manual initial guess (provided through problem.x0) will be used or the internally
stored solution from the previous call will be used can be controlled by the field problem.
reinitialize of the problem struct which is passed as an argument to the solver when it is
called.

The reinitialize field can take two values: 0 or 1. For the default usage of the solver

Matlab

Python

problem.reinitialize = 0;

problem["reinitialize"] = False

should be used. This choice results in the solver using the solution from the previous call as
initial guess. This feature is useful when running the real-time iteration scheme because it
ensures that the initial guess is close to the optimal solution. If you want to specify an initial
guess at run-time, you will need to set

Matlab

Python

problem.reinitialize = 1;

problem["reinitialize"] = True

So in summary: The first time the solver is called the initial guess the solver will use has to be
provided by problem.x0. In all subsequent calls the solver will only make use of problem.x0
as its initial guess if problem.reinitialize = 1.

9.7.4 Additional code options specific to the SQP-RTI solver

In addition to the above codeoptions, the following options are specific to the SQP algorithm.
Each of these options can be supplied when generating a solver as a field of codeoptions.
sqp_nlp (e.g. codeoptions.sqp_nlp.TolStat).
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Table 9.4: SQP specific codeoptions
option Possible values Default value Description
TolStat positive 10−6 Set the stationarity tolerance required

for terminating the algorithm (the toler-
ance required to claim convergence to a
KKT point).

TolEq positive 10−6 Set the feasibility tolerance required for
terminating the algorithm (the toler-
ance required to claim convergence to
a feasible point).

reg_hessian positive 5 · 10−9 Set the level of regularization of the
hessian approximation (often increas-
ing this parameter can help if the SQP
solver returns exitflag -8 for your prob-
lem)

qpinit 0 or 1 0 Set the initialization strategy for the in-
ternal QP solver. 0 = cold start and 1 =
centered start. See also Solver Initial-
ization (note however, that for the SQP
solver qpinit=2 is not possible).

In addition to these options one can also specify the maximum number of iterations the in-
ternal QP solver is allowed to run in order to solve the quadratic approximation. If one wishes
the QP solver use no more than k iterations to solve a problem one sets

codeoptions.maxit = k;

Note: The SQP algorithm currently does not support parallel execution, i.e. setting
codeoptions.parallel will have no effect.

9.8 Differences between the MATLAB and the Python client

The Python NLP interface is largely similar to the MATLAB interface, but does come with some
language- and implementation-specific differences.

• All indices in the problem formulation are expected to be 0-based in Python, as is usual
in this language. This does not include the indices of the generated solver, however,
where outputs are named x01, x02, . . . as in MATLAB. Thus, the problem formulation
before generation requires 0-based indices, whereas the returned solver from the server
uses 1-based indices. This also does not apply to the low-level Python interface, where
indices are 1-based even in the model formulation.

• In the Python client, different model objects must be used when using ex-
ternal functions or symbolic expressions, namely nlp.ExternalFunctionModel() and
nlp.SymbolicModel(). Furthermore, if the high-level interface is to be used for convex
problems, this is only possible using the nlp.ConvexSymbolicModel(). This is different
from the MATLAB client, where the FORCES_NLP function accepts problems of any kind
and switches to the appropriate solver automatically.

• When using the Python client with a nlp.SymbolicModel(), the C code generated for
symbolic expressions is currently not entirely identical to the code generated by MAT-
LAB. While the actual expression evaluation code generated by CasADi is the same,
the structure of the files varies. Specifically, the MATLAB client creates individual C
files for each problem stage with distinct symbolic expressions (leading to varying file
names when changing the problem horizon) whereas all functions are gathered in one
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file in the Python client. Yet, the Python client does add one additional file for the
FORCESPRO-CasADi glue code, which is not present when using the MATLAB client.
Lastly, function names of the evaluation functions differ.

If you want to get the same code for MATLAB and Python, you must generate the CasADi
C code from one of both clients and then supply this code as an external function in the
other client.

9.9 Examples

• High-level interface: Basic example: In this example, you learn the basics in how to use
FORCESPRO to create an MPC regulation controllers.

• High-level interface: Obstacle avoidance (MATLAB & Python): This example uses a sim-
ple nonlinear vehicle model to illustrate the use of FORCESPRO for real-time trajectory
planning around non-convex obstacles.

• High-level interface: Indoor localization (MATLAB & Python): This examples describes a
nonlinear optimization approach for the indoor localization problem.

• Mixed-integer nonlinear solver: F8 Crusader aircraft: In this example, you learn the ba-
sics in how to use FORCESPRO MINLP solver to solve a mixed-integer optimal control
problem.

• Real-time SQP Solver: Robotic Arm Manipulator (MATLAB & Python): This example de-
scribes how to apply the FORCESPRO SQP solver to control a robotic arm.

• Controlling a DC motor using a FORCESPRO SQP solver: This example describes how
to apply the FORCESPRO SQP solver to control a DC motor.

• Controlling a crane using a FORCESPRO NLP solver: This example describes how to
apply the FORCESPRO interior point NLP solver to control a crane.
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Chapter 10

Simulating your custom controller
in Simulink®

FORCESPRO provides a Simulink® interface for easy simulation of your custom controllers
within existing Simulink® diagrams. Once code has been generated the block transforms
into a new block with the appropriate number of ports for your specific configuration. De-
pending on your controller configuration you will have different input and output ports on
your block. The port labels are self-explanatory. Just wire the ports of the FORCESPRO block
to other blocks in you Simulink diagram and run the simulation.

Watch an introductory video on how to use the FORCESPRO Simulink® interface here

10.1 Configuration of a custom linear MPC controller using
the FORCESPRO Simulink® GUI

The Simulink® GUI for FORCESPRO is an easy and intuitive way to design model-based op-
timal controllers that can take decisions considering future information and system con-
straints. The general supported problem formulation is as follows:

Given a measurement or estimate of the current state of the system, 𝑥, and possibly:

• an estimate for an additive disturbance, 𝑤𝑘

• the previous control command, 𝑢𝑝𝑟𝑒𝑣 ,

• the output reference to track, 𝑦𝑟𝑒𝑓,𝑘

the controller decides the future control actions 𝑢0, 𝑢1, . . . , 𝑢𝑁−1, and the resulting predicted
state trajectory 𝑥1, 𝑥2, . . . , 𝑥𝑁 , over the prediction horizon, 𝑁 , in order to optimize the control
objectives

𝑁−1∑︁
𝑘=0

(𝑥𝑘+1 − 𝑥𝑠𝑠,𝑘)𝑇𝑄𝑘(𝑥𝑘+1 − 𝑥𝑠𝑠,𝑘) + (𝑢𝑘+1 − 𝑢𝑠𝑠,𝑘)𝑇𝑄𝑘(𝑢𝑘+1 − 𝑢𝑠𝑠,𝑘) + ∆𝑢𝑇𝑘 𝑇𝑘∆𝑢𝑘

where (︂
𝐴𝑘 − 𝐼 𝐵𝑘
𝐶 0

)︂(︂
𝑥𝑠𝑠,𝑘
𝑢𝑠𝑠,𝑘

)︂
=

(︂
0

𝑦𝑟𝑒𝑓,𝑘

)︂

∆𝑢0 = 𝑢0 − 𝑢𝑝𝑟𝑒𝑣,

∆𝑢0 = 𝑢𝑘 − 𝑢𝑘−1, 𝑘 = 1, ..., 𝑁 − 1
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subject to a linear mode of the system

𝑥1 = 𝐴0𝑥+𝐵0𝑢0 + 𝑤0

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 +𝐵𝑘𝑢𝑘 + 𝑤𝑘, for all 𝑘 = 1, . . . , 𝑁 − 1

𝑦𝑘 = 𝐶𝑥𝑘, for all 𝑘 = 1, . . . , 𝑁

and satisfying the system constraints

𝑦𝑘 ∈ Y𝑘, for all 𝑘 = 1, 2, . . . , 𝑁

𝑢𝑘 ∈ U𝑘, for all 𝑘 = 0, 1, . . . , 𝑁 − 1

∆𝑢𝑘 ∈ V𝑘, for all 𝑘 = 0, 1, . . . , 𝑁 − 1

The settings for your particular controller can be specified by editing the mask of the FORCE-
SPRO Simulink block. To start a new controller design copy the block in LTI_MPC_lib.mdl
to your Simulink diagram and give a name to your controller. Double click on the new block
and configure the different parameters as described here:

10.1.1 Model

Describe your linear state-space model of the system.

• Time : Choose whether your state-space model is described using differential equations
or using a discrete update equation.

• Type : Choose whether your model has an extra affine term, i.e. is w present?

• Sampling time : If you are loading a continuous-time model specify the sampling time
in seconds.

• System matrices : Specify the workspace variables describing the different system ma-
trices A,B,C, and , if present, vector w.

• Parameters : Some variables are allowed to be parameters at design time, i.e. they can
change dynamically during runtime. To allow this feature mark the appropriate check
boxes to determine whether the parameter changes over the prediction horizon.

• System dimensions : If one or more system matrices are parameters you might need to
specify any unresolved system dimensions.

10.1.2 Control Objectives

The control objectives are typically a trade-off between how well the controller tracks the out-
put reference and how much input action it uses.

• Tracking options: Check if the controller is tracking an output reference or leave
unchecked if the controller is regulating to the origin. If the controller is tracking a refer-
ence, specify whether the output reference 𝑦𝑟𝑒𝑓 will be provided, or whether the steady-
state offset-free state and input references, 𝑥𝑠𝑠 and 𝑢𝑠𝑠, have already been calculated.
Also specify if the reference is changing over time and whether the changes are known
ahead of time or not (𝑦𝑟𝑒𝑓,𝑘 = 𝑦𝑟𝑒𝑓 ). If reference changes are known ahead of time, the
controller can use this preview information to improve the control performance.

• Input slew rate penalty : Check if the controller should also attempt to minimize the
actuator changes between control samples. If the checkbox is left unmarked, the weight
matrix 𝑇 is set to zero.
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• Terminal cost : If the checkbox is marked the state penalty matrix for the last stage be-
comes 𝑄𝑁 := 𝑃 , where 𝑃 is the solution of the discrete-time Ricatti equation. Note that
the matrix 𝑃 can only be computed when matrices 𝐴, 𝐵, 𝐶 , and 𝑅 are known at design
time, i.e. they are not runtime parameters. In general, having a terminal cost allows for a
reduced prediction horizon but imposes certain restrictions on the optimization meth-
ods that can be used.

• Control horizon : Specify the number of samples that the controller looks into the future.
In general, a longer control horizon can improve control performance but leads to longer
computation times.

• Weighting matrices : Check if the weighting matrices on the outputs, 𝑄, on the inputs,
𝑅, and on the input rates, 𝑇 , are available and specify the corresponding workspace vari-
ables. If no weighting matrices are available specify the relative importance for track-
ing/regulation of the different outputs, inputs and slew rates. A high weight on an out-
put tells the controller to focus on improving the tracking performance on that output.
A high weight on an input tells the controller to use less of that input.

• Parameters : The penalty matrices can also be parameters at design time and change
dynamically at runtime. To allow this feature mark the appropriate check boxes to de-
termine whether the parameter changes over the prediction horizon.

10.1.3 System Constraints

Describe system limits that cannot be exceeded due to physical, safety, economic or regula-
tory reasons.

• Constraint list : Check which output, input, and slew rate constraints are present. For
each constraint specify the upper and lower bounds. Note that an empty bound implies
a one-sided constraint, e.g. 0 ≤ 𝑢1.

• Soft constraints : Output constraints can be specified to be soft to prevent infeasible
problems. In this case a slack variable, 𝛿, is introduced resulting in the constraint.

−23𝛿 ≤𝑦2 ≤ 23 + 𝛿,

𝛿 ≥ 0.

• Parameters : Upper and lower bounds can also be defined as runtime parameters. To al-
low this feature mark the appropriate check boxes to determine whether the parameter
changes over the prediction horizon.

10.1.4 Estimator Settings

Describe additional characteristics for your customized solver.

• Data type : Choose the data type used by the solver. For some embedded platforms,
floating-point computations (specially double precision) will incur significant computa-
tional delays. In the standard and premium versions of FORCESPRO fixed-point data
types can lead to reduced computation times depending on the platform, but this im-
poses certain restrictions on the optimization methods that can be used.

• Optimization method : The basic version of FORCESPRO always uses a Primal-Dual
Interior-Point (PDIP) method to implement the optimal controller. In the standard
and premium versions of FORCESPRO one can select other alternative methods, such
as ADMM and DFGM, that can lead to reduced computation times. One can also let
FORCESPRO choose the most appropriate optimization method for your problem.

• Number of iterations : Specify the maximum number of iterations used in the optimiza-
tion algorithm. One can also let FORCESPRO determine the number of iterations for
your problem.
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• Method-specific options : For some methods the user can choose values for certain pa-
rameters to tune the performance of the method.

• Platform : In the standard and premium versions of FORCESPRO one can choose the
platform that the solver will run on to obtain customized code for the particular plat-
form. For desktop based platforms, choose ‘x86_64’ for 64-bit platforms and ‘x86’ for
32-bit platforms. For embedded platforms, choose between ‘x86’, ‘ARM Cortex M3 and
M4’, ‘ARM Cortex A9’, ‘Tricore’, ‘PowerPC’, or get a customized circuit design described in
VHDL. Note that additional add-ons for FORCESPRO are required to generate code for
different target platforms.

• Description : Add an optional description for your controller that can be used later to
identify the settings for a particular controller instance in your web workspace.

• Solve information : Mark this check box to obtain runtime information from the solver
that can be used to diagnose problems.

Once all the necessary solver options have been specified a custom solver for your con-
troller can be built by executing the command configure_block. The command returns
an error if any essential information is missing or if the license type is not valid. Note that
this command transforms the block to make it ready for simulation. Once a controller has
been generated you can change the configuration by double clicking the block and running
configure_block again.

Several instance of the FORCESPRO block can exist in the same Simulink® diagram.

10.2 Getting Started - Basic MPC Regulation State Feedback
Example

This example will show how to get started with the Simulink® interface of FORCESPRO by
designing an MPC regulator for the system below.

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

𝑥𝑘+1 =

(︂
0.7115 −0.4345
0.4345 0.8853

)︂
𝑥𝑘 +

(︂
0.2173
0.0573

)︂
𝑢𝑘

𝑦𝑘 =
(︀
0 1

)︀
𝑥𝑘

In addition to the task of steering the two states to zero, there are constraints on the single
actuator 𝑢 and on the second state 𝑥2. We require that the actuator 𝑢 does not exceed [−5, 5]
and the state 𝑥2 ≥ 0 for all time. After downloading the files we can start with the design of
the controller. First load the data from myFirstController_data.mat into the workspace
and then open the Simulink® model myFirstController_sim.slx.

Then copy the FORCESPRO Simulink® block MPC_lib_2012b.mdl into your Simulink® dia-
gram. Give the block a name. Here we will call it myFirstController.

We are now ready to configure the controller. Double-click on the block and go to the ‘Model’
tab to enter the details of the system that we want to control. The model described above has
already been discretized with a sampling time of 0.1 seconds. We therefore choose ‘Discrete-
time model’ and chose the type of state-space model (we have no additive term 𝑔 in this
example). Enter the state transition matrix 𝐴, the input matrix 𝐵 and the output matrix 𝐶𝑎𝑙𝑙.
Notice that we use𝐶𝑎𝑙𝑙, which is just the identity matrix, instead of𝐶 , since we want to regulate
both states, not just the output of the system.

We are now ready to configure the controller. Double-click on the block and go to the ‘Model’
tab to enter the details of the system that we want to control. The model described above has
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already been discretized with a sampling time of 0.1 seconds. We therefore choose ‘Discrete-
time model’ and chose the type of state-space model (we have no additive term 𝑔 in this
example). Enter the state transition matrix 𝐴, the input matrix 𝐵 and the output matrix 𝐶𝐴𝑙𝑙.
Notice that we use 𝐶𝐴𝑙𝑙, which is just the identity matrix, instead of 𝐶 , since we want to regu-
late both states, not just the output of the system.

In the ‘Control Objective’ tab we choose a prediction horizon of 10 steps, i. e. the controller
looks 1 second into the future. We will input the relative weights manually. We weight the
importance of regulating the states 10 times higher then reducing the use of the actuator.

You are encouraged to change these weights and observe the effect on the control behaviour.

In the ‘System Constraints’ tab we input the details of the constraints described above. The
second state must remain positive, whereas the first state is left unconstrained. We also have a
constraint on the actuator. We enter the lower bound −5 and the upper bound 5. We can also
check the option ‘Soft Constraint’ for the output constraint to prevent infeasibility problems
in the solver.

Since we are designing a state feedback controller we will leave the only option in the ‘Esti-
mator’ tab as ‘State Feedback’. There will be no estimator built into the FORCESPRO block.

If we wish the controller to give information on the optimization process at each time step
we check the option ‘Get Solve Information’ in the ‘Settings’ tab. The controller will have an
additional output from which we can read this information.
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We are now ready to configure the controller. Simply type

>> configure_block

in the MATLAB® command prompt. This will send a request to the server which will gen-
erate a custom controller for your problem. The code is downloaded to your machine and
the FORCESPRO block is automatically updated and made ready for simulation on your
Simulink® diagram. We can connect the ports of the controller to the rest of the system
and run the simulation.

From the left plot we can see that the actuator remains in the allowed range. The right plot
shows how the second state 𝑥2 is always non-negative (purple graph in the right plot) and
both states are regulated to zero.

10.3 Real-time control with the Simulink block

When a user generates a new solver from either the graphical Simulink interface, or the tex-
tual MATLAB or Python interfaces, several Simulink blocks are automatically created in the
‘interfaces’ folder. These blocks are useful to interface the solver with other Simulink mod-
els for simulation, or for deployment in embedded prototyping hardware using tools such as
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dSpace MicroAutobox or Simulink Coder.

In the following we describe the difference between the different available Simulink inter-
faces.

10.3.1 Input and Output Ports in the Compact Interface

For every solver, there are two Simulink interfaces generated: a standard interface; and a com-
pact interface, which groups parameters and outputs. For problems with many parameters
and outputs, the compact interface is more suitable because it reduces the number of ports
and connections that need to be wired up to the rest of the Simulink model.

The criteria for grouping parameters is the following: parameters of the same type that have
the same number of rows are grouped together into a single stacked parameter. These pa-
rameters are stacked horizontally, e.g. if there are two parameters mapping to eq.c, both of
size 3x1, they will be grouped into a new parameter of size 3x2. The new parameter will get
the name c.

To illustrate the conversion consider a problem with the following parameters and with the
corresponding standard (non-compact) Simulink block:

Name maps2data Dimensions
Amat1 eq.D 2x4
Amat2 eq.D 3x4
Amat3 eq.D 3x4
Amat4 eq.D 3x4
linterm1 cost.f 4x1
linterm2 cost.f 4x1
linterm3 cost.f 4x1
linterm4 cost.f 4x1

For the compact Simulink block, parameters linterm1, linterm2, linterm3 and linterm4
are stacked together into a new parameter f (because the problem data they map to is cost.
f). For the parameters mapping to eq.D, Amat2, Amat3 and Amat4 can be stacked into the
new parameter D. Amat1 is not included into the new parameter because it has two rows
and the concatenation is not possible with the other parameters, which all have three rows.
Parameters are always stacked horizontally according to the stage number they map to.

Name maps2data Dimensions
D eq.D 3x12
f cost.f 4x4
Amat1 eq.D 2x4
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The port dimensions of any FORCESPRO Simulink block can be checked by double-clicking
the block and clicking the ‘Help’ button.
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Chapter 11

Examples

11.1 How to

11.1.1 Basic Example

Consider the following linear MPC problem with lower and upper bounds on state and inputs,
and a terminal cost term:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ 𝑥̄

𝑢 ≤ 𝑢𝑖 ≤ 𝑢̄

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to
the system after a solution has been obtained. The following code generates a function that
takes −𝐴𝑥 as a calling argument and returns 𝑢0, which can then be applied to the system.

Here is the Matlab code:

%% FORCES multistage form
% assume variable ordering zi = [ui, xi+1] for i=1...N-1

stages = MultistageProblem(N); % get stages struct of length N

for i = 1:N

% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nx+nu; % number of lower bounds
stages(i).dims.u = nx+nu; % number of upper bounds

% cost
if( i == N )

stages(i).cost.H = blkdiag(R,P); % terminal cost (Hessian)
else

stages(i).cost.H = blkdiag(R,Q);
end
stages(i).cost.f = zeros(nx+nu,1); % linear cost terms

(continues on next page)
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% lower bounds
stages(i).ineq.b.lbidx = 1:(nu+nx); % lower bound acts on these indices
stages(i).ineq.b.lb = [umin; xmin]; % lower bound for this stage variable

% upper bounds
stages(i).ineq.b.ubidx = 1:(nu+nx); % upper bound acts on these indices
stages(i).ineq.b.ub = [umax; xmax]; % upper bound for this stage variable

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(nx,nu), A];
end
if( i>1 )

stages(i).eq.c = zeros(nx,1);
end
stages(i).eq.D = [B, -eye(nx)];

end

% RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0
params(1) = newParam('minusA_times_x0',1,'eq.c');

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

And here’s the Python code:

# FORCES multistage form
# assume variable ordering zi = [ui, xi+1] for i=1...N-1

stages = MultistageProblem(N) # get stages struct of length N

for i in range(N):

# dimension
stages.dims[ i ]['n'] = nx+nu # number of stage variables
stages.dims[ i ]['r'] = nx # number of equality constraints
stages.dims[ i ]['l'] = nx+nu # number of lower bounds
stages.dims[ i ]['u'] = nx+nu # number of upper bounds

# cost
if ( i == N-1 ):

stages.cost[ i ]['H'] = np.vstack((np.hstack((R,np.zeros((nu,
→˓nx)))),np.hstack((np.zeros((nx,nu)),P))))

else:
stages.cost[ i ]['H'] = np.vstack((np.hstack((R,np.zeros((nu,

→˓nx)))),np.hstack((np.zeros((nx,nu)),Q))))
stages.cost[ i ]['f'] = np.zeros((nx+nu,1)) # linear cost terms

# lower bounds
stages.ineq[ i ]['b']['lbidx'] = range(1,nu+nx+1) # lower bound acts on

→˓these indices
stages.ineq[ i ]['b']['lb'] = np.concatenate((umin,xmin),0) # lower bound

→˓for this stage variable

# upper bounds
stages.ineq[ i ]['b']['ubidx'] = range(1,nu+nx+1) # upper bound acts on

→˓these indices
stages.ineq[ i ]['b']['ub'] = np.concatenate((umax,xmax),0) # upper bound

→˓for this stage variable

# equality constraints

(continues on next page)
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if ( i < N-1 ):
stages.eq[i]['C'] = np.hstack((np.zeros((nx,nu)),A))

if ( i>0 ):
stages.eq[i]['c'] = np.zeros((nx,1))

stages.eq[i]['D'] = np.hstack((B,-np.eye(nx)))

# RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0
stages.newParam('minusA_times_x0', [1], 'eq.c')
# define output of the solver
stages.newOutput('u0', 1, range(1,nu+1))

11.1.2 How to Incorporate Preview Information in the MPC Problem

Introduction

In this example the following discrete-time system is considered:

𝑥𝑘+1 =

(︂
0.7115 −0.4345
0.4345 0.8853

)︂
𝑥𝑘 +

(︂
1
1

)︂
𝑢𝑘 +

(︂
1
1

)︂
𝑤𝑘

The control objective is to regulate the two states to zero using the input 𝑢𝑘 , while a distur-
bance 𝑤𝑘 is acting on the system. The disturbance 𝑤𝑘 gets predicted for a horizon of length
𝑁 = 10, which is equal to the control horizon of the model predictive control problem solved
at each time step by the FORCESPRO controller. At each time step 𝑘, a predicted disturbance
for the next 𝑁 steps is considered by the FORCESPRO controller. For the cost function of the
MPC problem, it is assumed that the relative importance of regulating the two states to zero
is ten times as high as the penalty on applying an input. Further it is demanded, that the in-
put magnitude of the input signal 𝑢 lies in the range [−1.8, 1.8]. The initial state of the system
is set to zero, i. e. 𝑥0 = [0; 0].

One can see that the disturbance drives the states far away from the desired value. In this
example it is shown how FORCESPRO can significantly improve the dynamical behaviour by
using the concept of ‘preview’ when such future information is available.

To implement a FORCESPRO controller with ‘preview’ one can either use the Simulink® in-
terface or the MATLAB® interface. Here both options are presented. The result is the same.

Use preview information in the Simulink® interface

To implement a FORCESPRO controller which makes use of preview information, drag the
LTI_MPC block from the LTI_MPC_lib from the FORCES_PRO folder into the Simulink® model.
After renaming the block, double click on it and chose in the tab Model the settings shown on
the right side. In this example, the preview information comes through the additive term g.
Check the option parameter. g is a parameter because at each time instant new disturbance
predictions enter the controller. Also note that the additive term g is not constant over time,
i.e. the disturbance prediction can vary over the prediction horizon.
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The rest of the configuration of the FORCESPRO block is the same as for the design of a stan-
dard MPC regulator described here. After finishing the configuration, type configure_block
to obtain a customized solver for your controller.

The controller is now configured and the number of inputs ports to the controller is deter-
mined by the length of the preview horizon.

Add the data of the disturbance and its preview from the workspace to model and start the
simulation. To see the impact of using preview information see the section Comparison of
MPC with Preview and Standard MPC below.

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client. When running this example the code will automatically generate
the Simulink block.

Use preview information in the MATLAB® interface

The same problem can be solved using the MATLAB® Interface. The multistage problem is
constructed as shown in the simple example here and is then extended as shown below.

As in the Simulink® interface, the parametric additive terms g have to be defined. At each
stage of the multistage problem, the equality constraint change, therefore we have to define
a parameter for each stage. In the definition of the parameters, distx represents the name
of the predicted disturbance at stage x of the multistage problem.

During runtime, the preview information is mapped to these parameters.

% RHS of first eq. constr. is a parameter: z1=-A*x0 -Bw*Road
parameter(1) = newParam('minusA_times_x0_BwDist',1,'eq.c');
% Parameter of Preview
parameter(2) = newParam('dist1',2,'eq.c');
parameter(3) = newParam('dist2',3,'eq.c');
parameter(4) = newParam('dist3',4,'eq.c');
parameter(5) = newParam('dist4',5,'eq.c');
parameter(6) = newParam('dist5',6,'eq.c');
parameter(7) = newParam('dist6',7,'eq.c');
parameter(8) = newParam('dist7',8,'eq.c');
parameter(9) = newParam('dist8',9,'eq.c');
parameter(10) = newParam('dist9',10,'eq.c');

After setting up the multistage problem with the parametric equality constraints, configure
the solver settings (i. e. define solver output and solver options), the solver can be generated
by using the command generateCode(...). With the function provided by FORCESPRO,
the system is now ready for simulation.
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Comparison of MPC with Preview and Standard MPC

Figure 11.2 shows the dynamics of the system using a non-preview controller and a preview
controller designed using FORCES Pro. One can see that the maximum deviation of the two
states from their desired value is reduced by a factor 18, and 11, respectively. Compared to the
open loop case, the magnitude of the deviation is reduced by a factor of 47, and 34, respec-
tively.

Figure 11.1 shows the control action of both controllers. As expected, the input signal remains
in the allowed range. One can see how the preview controller makes use of future information
to provide a more aggressive control action that results in improved system performance.

Figure 11.1: Comparison preview vs. non-preview

11.1.3 HOW TO: Implement an MPC Controller with a Time-Varying Model

Introduction

This ‘HOW TO’ explains how FORCESPRO can be used to handle time-varying models to
achieve better control performance than a standard MPC controller. For this example it is
assumed that the time-varying model consists of four different systems. This could be four
models derived from a nonlinear system at four operating points or from a periodic system.
The systems are listed below. The first system is a damped harmonic oscillator, while the sec-
ond system has eigenvalues on the right plane and is therefore unstable. System three is also
a damped oscillator, but differs from system one. System four is an undamped harmonic
oscillator.

System 1: 𝑥𝑘+1 =

(︂
0.7115 −0.6

0.6 0.8853

)︂
𝑥𝑘 +

(︂
0.2173
0.0573

)︂
𝑢𝑘

System 2: 𝑥𝑘+1 =

(︂
0.9 0.5
0.5 1

)︂
𝑥𝑘 +

(︂
0

0.0666

)︂
𝑢𝑘

System 3: 𝑥𝑘+1 =

(︂
0.7115 −0.5

0.5 1

)︂
𝑥𝑘 +

(︂
0.5
0.01

)︂
𝑢𝑘

System 4: 𝑥𝑘+1 =

(︂
0 0.9
−1 0

)︂
𝑥𝑘 +

(︂
0

0.2

)︂
𝑢𝑘

124 Chapter 11. Examples



FORCESPRO User Manual

Figure 11.2: Comparison preview vs. no preview

In this example we assume that system 1 is active for the first 4 steps. Then at step 5 the
model changes to system 2, which stays active for 8 steps. Then we switch to system 3 for the
following 3 steps and finally system 4 is active for the next 5 steps. This pattern is periodic, i. e.
every 20 steps the cycle starts again. Also we have an initial condition of 𝑥0 = [1; 1], a prediction
horizon 𝑁 = 15 and the simulation runs for 40 steps.

The open loop dynamics of this time-varying model are shown on the right. One can see
that the system becomes unstable. The goal is to regulate both states to zero while satisfying
the different input constraints on each system. The constraints on the model are 𝑢 ∈ [−3, 5],
𝑢 ∈ [−5.5, 5.5], 𝑢 ∈ [−3, 5] and 𝑢 ∈ [−0.45, 4.5] for systems 1, 2, 3 and 4, respectively.

At each step 𝑘 FORCESPRO takes the changing state space matrices and the corresponding
input constraints into account, in order to regulate both states to zero as fast as possible. The
following section shows how a controller for this problem can be implemented using the
FORCESPRO MATLAB® Interface.
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Implementation

The FORCESPRO MATLAB® Interface is used to pose a multistage problem problem as de-
scribed here. When taking the changing dynamics over the prediction horizon into account,
the matrices 𝐶𝑖−1 and 𝐷𝑖 of the inter-stage equality have to be defined as parameters for
each prediction step 𝑖. Additionally the lower bounds 𝑧𝑖 and the upper bounds 𝑧𝑖 on the op-
timization variable have to be defined as parameters as they also change over the prediction
horizon. Also, the initial condition has to be set as a parameter. The code below shows the
multistage problem and the commands to design the controller using FORCESPRO.

%% Multistage Problem: Varying Model in Prediction Horizon
stages = MultistageProblem(N); % get stages struct of length N

% Initial Equality
% c_1 = -A*x0
parameter(1) = newParam('minusA_times_x0',1,'eq.c');

for i = 1:N
% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nu; % number of lower bounds
stages(i).dims.u = nu; % number of upper bounds

% lower bounds
stages(i).ineq.b.lbidx = 1; % lower bound acts on these indices
parameter(1+i) = newParam(['u',num2str(i),'min'],i,'ineq.b.lb');

% upper bounds
stages(i).ineq.b.ubidx = 1; % upper bound acts on these indices
parameter(1+N+i) = newParam(['u',num2str(i),'max'],i,'ineq.b.ub');

% cost
stages(i).cost.H = blkdiag(R,Q);
stages(i).cost.f = zeros(nx+nu,1);

% Equality constraints
if( i>1 )

stages(i).eq.c = zeros(nx,1);
end
% Inter-Stage Equlity
% D_i*z_i = [B_i -I]*z_i
parameter(1+2*N+i) = newParam(['D_',num2str(i)],i,'eq.D');
if( i < n)

% C_{i-1}*z_{i-1} = [0 A_i]*z_{i-1}
parameter(1+3*N+i) = newParam(['C_',num2str(i)],i,'eq.C’);

end
end

% define outputs of the solver
outputs(1) = newOutput('u0',1,1);
% solver settings
codeoptions = getOptions('Time_Varying_Model_wP');
% generate code
generateCode(stages,parameter,codeoptions,outputs);

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

126 Chapter 11. Examples



FORCESPRO User Manual

Comparison of the two approaches

The two plots in Figure 11.3 and Figure 11.4 respectively, show the difference between the re-
sponse of a controller that assumes constant matrices 𝐴 and 𝐵 over the whole prediction
horizon, and a controller that considers the changing dynamics, e. g. at time step 0 the sec-
ond controller knows that system 1 will only be active for the first 4 steps. The left plot shows
the system response and the right plot shows the actuator signals and the varying system
constraints.

Both controllers can satisfy the contraints. To quantify the improvement in control perfor-
mance, the cost function

∑︀𝑁
𝑘=1 𝑥

𝑇
𝑘𝑄𝑥𝑘 + 𝑢𝑇𝑘𝑅𝑢𝑘 can be evaluated for the whole simulation

length of 𝑛 = 40. For the controller that uses a fixed model for the prediction horizon, the
closed loop cost for regulating the states to zero is 2163.2. With the FORCESPRO time-varying
controller the costs is reduced to 457.5. This is a cost reduction of almost 80%.

Figure 11.3: States Time-varying MPC vs. basic MPC

Figure 11.4: Input Time-varying MPC vs. basic MPC

11.1.4 How to Implement 1-Norm and Infinity-Norm Cost Functions
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Introduction

In this example we use the system described in the Basic MPC Example, but we will imple-
ment non-quadratic costs of the type

||𝑅𝑢𝑖||1

or

||𝑄𝑥𝑖||∞

which are sometimes more meaningful for certain applications.

In both cases we will have to introduce slack variables and additional constraints, hence the
optimization problem will become more challenging to solve, even if the cost function be-
comes linear instead of quadratic.

1-norm reformulation

The 1-norm is the absolute sum of a vector, hence a 1-norm penalty on the actuators can be a
more meaningful objective when, for instance, the fuel consumption is directly proportional
to actuation. The 1-norm also induces sparsity in the solution vector, i.e. a 1-norm cost leads to
solutions where actuators are not used at all if possible, which can more accurately represent
the objective of minimising wear in certain applications.

To formulate a 1-norm cost as an optimization problem we introduce one slack variable 𝜖𝑗 per
vector element of 𝑅𝑢𝑖 (i.e. such that the vector 𝜖 has the same length as the vector 𝑅𝑢𝑖) and
add it to the polytopic constraints. As a result, the problem

minimize ||𝑅𝑢𝑖||1
subject to constraints

is transformed into the problem

minimize
∑︁
𝑗

𝜖𝑗

subject to ±𝑅𝑢𝑖 ≤ 𝜖

constraints

The following MATLAB code shows how to model a problem with 1-norm penalties on the
actuators and quadratic penalties on the states with FORCESPRO. In particular, note the
changes to the cost function and the introduction of polytopic constraints.

%% FORCES multistage form
% assume variable ordering zi = [ui, xi+1, ei] for i=1...N-1

stages = MultistageProblem(N); % get stages struct of length N

for i = 1:N

% dimension
stages(i).dims.n = nx+2*nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nx+nu; % number of lower bounds
stages(i).dims.u = nx+nu; % number of upper bounds
stages(i).dims.p = 2*nu; % number of polytopic constraints

% cost
if( i == N )

(continues on next page)
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stages(i).cost.H = blkdiag(zeros(nu),P,zeros(nu)); % terminal cost
→˓(Hessian)

else
stages(i).cost.H = blkdiag(zeros(nu),Q,zeros(nu));

end
stages(i).cost.f = [zeros(nx+nu,1); ones(nu,1)]; % linear cost terms

% lower bounds
stages(i).ineq.b.lbidx = 1:(nu+nx); % lower bound acts on these indices
stages(i).ineq.b.lb = [umin; xmin]; % lower bound for this stage variable

% upper bounds
stages(i).ineq.b.ubidx = 1:(nu+nx); % upper bound acts on these indices
stages(i).ineq.b.ub = [umax; xmax]; % upper bound for this stage variable

% polytopic bounds
stages(i).ineq.p.A = [ R, zeros(nu,nx), -eye(nu); ...

-R, zeros(nu,nx), -eye(nu)];
stages(i).ineq.p.b = zeros(2*nu,1);

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(nx,nu), A, zeros(nx,nu) ];
end
if( i>1 )

stages(i).eq.c = zeros(nx,1);
end
stages(i).eq.D = [B, -eye(nx), zeros(nx,nu)];

end

% RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0
params(1) = newParam('minusA_times_x0',1,'eq.c');

You can download the Matlab code of this example using this link.

∞-norm formulation

The ∞-norm is the maximum absolute value in a vector, hence an ∞-norm penalty on the
states tries to minimise the maximum deviation of any state from the setpoint rather than
the combined deviation of all the states in the system.

To formulate an ∞-norm cost as an optimization problem we need to introduce a single slack
variable 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 and add polytopic constraints. As a result, the problem

minimize ||𝑄𝑥𝑖||∞
subject to constraints

is transformed into the problem

minimize 𝜖

subject to ±𝑄𝑥𝑖 ≤ 1𝑇 𝜖

constraints

where the vector 1 = [1 . . . 1] has the same length as the vector 𝑄𝑥𝑖.

The following MATLAB code shows how to model a problem with ∞-norm penalties on
the states and quadratic penalties on the inputs with FORCESPRO. In particular, note the
changes to the cost function and the introduction of polytopic constraints. Also note that we
only need to add one more variable per stage.
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%% FORCES multistage form
% assume variable ordering zi = [ui, xi+1, ei] for i=1...N-1

stages = MultistageProblem(N); % get stages struct of length N

for i = 1:N

% dimension
stages(i).dims.n = nx+nu+1; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nx+nu; % number of lower bounds
stages(i).dims.u = nx+nu; % number of upper bounds
stages(i).dims.p = 2*nx; % number of polytopic constraints

% cost
if( i == N )

stages(i).cost.H = blkdiag(R,zeros(nx),0); % terminal cost
→˓(Hessian)

else
stages(i).cost.H = blkdiag(Q,zeros(nx),0);

end
stages(i).cost.f = [zeros(nx+nu,1); 1]; % linear cost terms

% lower bounds
stages(i).ineq.b.lbidx = 1:(nu+nx); % lower bound acts on these indices
stages(i).ineq.b.lb = [umin; xmin]; % lower bound for this stage variable

% upper bounds
stages(i).ineq.b.ubidx = 1:(nu+nx); % upper bound acts on these indices
stages(i).ineq.b.ub = [umax; xmax]; % upper bound for this stage variable

% polytopic bounds
if( i == N )

stages(i).ineq.p.A = [ zeros(nx,nu), P, -ones(nx,1); ...
zeros(nx,nu), -P, -

→˓ones(nx,1)];
else

stages(i).ineq.p.A = [ zeros(nx,nu), Q, -ones(nx,1); ...
zeros(nx,nu), -Q, -

→˓ones(nx,1)];
end
stages(i).ineq.p.b = zeros(2*nx,1);

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(nx,nu), A, zeros(nx,1)];
end
if( i>1 )

stages(i).eq.c = zeros(nx,1);
end
stages(i).eq.D = [B, -eye(nx), zeros(nx,1)];

end

% RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0
params(1) = newParam('minusA_times_x0',1,'eq.c');

Here you can download the Matlab code of this example.

11.1.5 HOW TO: Implement Rate Constraints
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Problem formulation

In this example it is illustrated how slew rate constraints on a system’s actuators can be in-
corporated in the controller design. As a real world example one could think of an airplane,
where the elevator cannot be switched instantaneously from one position to another, i. e. has
a limited slew rate. Here the concept of constraints on the slew rate is shown on the following
system:

𝑥𝑘+1 =

(︂
0.7115 −0.4345
0.4345 0.8853

)︂
𝑥𝑘 +

(︂
0.2173
0.0573

)︂
𝑢𝑘 ⇔ 𝑥𝑘+1 = 𝐴𝑥𝑘 +𝐵𝑢𝑘

To have a bound on the slew rate, 𝑢𝑘 − 𝑢𝑘−1 has to lie in some range, i. e.

∆𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 − 𝑢𝑘−1 ≤ ∆𝑢𝑚𝑎𝑥.

One option to set the constraints on the slew rate is to augment the state as follows:

𝑥̂𝑘 =

(︂
𝑥𝑘
𝑢𝑘−1

)︂
⇔ 𝑥̂𝑘+1 =

(︂
𝐴 𝐵
0 𝐼

)︂
𝑥̂𝑘 +

(︂
𝐵
𝐼

)︂
𝑢̂𝑘 ⇔ 𝑥̂𝑘+1 = 𝐴𝑥̂𝑘 + 𝐵̂𝑢̂𝑘

where 𝑢̂ is defined as 𝑢𝑘−𝑢𝑘−1. To implement the problem using FORCESPRO, the multistage
problem has to be defined as stated here. The optimization variable is 𝑧𝑖 = [𝑢̂𝑖 𝑥̂𝑖+1]𝑇 .

𝑥̂𝑘+1 =𝐴𝑥̂𝑘 + 𝐵̂𝑢̂𝑘

∆𝑢𝑚𝑖𝑛 ≤ 𝑢̂ ≤ ∆𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛 ≤𝑢 ≤ ∆𝑢𝑚𝑎𝑥⃦⃦⇓
minimize

1

2

𝑁∑︁
𝑖=1

𝑧𝑇𝑖 𝐻𝑖𝑧𝑖

subject to 𝐷1𝑧1 = 𝑐1

𝐶𝑖−1𝑧𝑖−1 +𝐷𝑖𝑧𝑖 = 𝑐𝑖

𝑧𝑚𝑖𝑛 ≤ 𝑧𝑖 ≤ 𝑧𝑚𝑎𝑥

The details on how the first equality and the interstage equality look like and how the con-
straints are implemented can be seen in the MATLAB® code below.

Implementation

%% FORCES multistage form
% assume variable ordering zi = [uhat_i, xhat_{i+1}] for i=1...N-1

stages = MultistageProblem(N); % get stages struct of length N

for i = 1:N

% dimension
stages(i).dims.n = 4; % number of stage variables
stages(i).dims.r = 3; % number of equality constraints
stages(i).dims.l = 2; % number of lower bounds: minimal slew rate and

→˓minimal input
stages(i).dims.u = 2; % number of upper bounds: maximal slew rate and

→˓maximal input

% cost
if( i == N )

stages(i).cost.H = blkdiag(R_sr, [P, zeros(2,1); zeros(1,2), 0]);
→˓% terminal cost (Hessian)

(continues on next page)
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(continued from previous page)

else
stages(i).cost.H = blkdiag(R_sr, [Q, zeros(2,1); zeros(1,2), R]);

end
stages(i).cost.f = zeros(3,1); % linear cost terms

% lower bounds
stages(i).ineq.b.lbidx = [1,4]; % indices of lower bounds
stages(i).ineq.b.lb = [dumin; umin]; % lower bounds

% upper bounds
stages(i).ineq.b.ubidx = [1,4]; % indices of upper bounds
stages(i).ineq.b.ub = [dumax; umax]; % upper bounds

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(3,1), [ A, B; zeros(1, 2), 1]];
end
if( i>1 )

stages(i).eq.c = zeros(3,1);
end
stages(i).eq.D = [[B;1], -eye(3)];

end

% RHS of initial equality constraint is a parameter
parameter(1) = newParam('minusAhat_times_xhat0',1,'eq.c');

% Define outputs of the solver
output(1) = newOutput('uhat',1,1);

% Solver settings
codeoptions = getOptions('RateConstraints_Controller');

% Generate code
generateCode(stages,parameter,codeoptions,output);

You can download the Matlab code of this example to try it out for yourself here

Simulation Results

For simulation the following specifications are assumed: the initial condition 𝑥0 ∈ [−2; 6], the
input signal 𝑢 is in the range [−0.5, 2] and the constraints on the slew rate is 𝑢̂ ∈ [−1, 0.5]. Figure
11.5, Figure 11.6 and Figure 11.7 show how the controller regulates both states to zero while 𝑢̂
and 𝑢 remain in the required range.

Figure 11.5: The states are both regulated to zero. No constraints are imposed on the states.

In Figure 11.6 and Figure 11.7 one sees how the input signal is maximally increased in the be-
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Figure 11.6: Plot of 𝑢

Figure 11.7: Plot of 𝑑𝑢

ginning with a slew rate of 0.5, until it reaches its upper bound of 2. In the figure on the right
the slew rate is depicted. One can see that in the beginning, the slew rate stays at its upper
bound 0.5. At simulation step 6 the input signal is maximally reduced. Again this is visible
from the slew rate being at its lower bound −1.

11.1.6 Binary MPC Example

Let us consider a simple MPC example where the system has inputs that can take only two
values, 𝑢𝑚𝑖𝑛 or 𝑢𝑚𝑎𝑥. The original problem (shown on the left) can be reformulated into the
problem on the right, which corresponds to a standard form for which FORCESPRO can gen-
erate a solver. The details of the reformulation are given at the end of this example.

Simple MPC problem with discrete inputs:

minimize 𝑥𝑇𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥𝑇𝑖 𝑄𝑥𝑖 + 𝑢𝑇𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑚𝑎𝑥

𝑢𝑖 ∈ {𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥}

Equivalent problem with binary inputs

minimize 𝑥𝑇𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥𝑇𝑖 𝑄𝑥𝑖 + 𝛿𝑇𝑖 𝑅̃𝛿𝑖 + 𝑓𝑇 𝛿𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵̃𝛿𝑖 + 𝑏

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑚𝑎𝑥

𝛿𝑖 ∈ {0, 1}𝑛𝑢
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The problem on the right can now be easily formulated in FORCESPRO. Note that the prob-
lem description is very similar to that of the simple MPC example, with the only modification
that certain variables are marked to be binary. Download and run a complete simulation
script to see the output.

nx = 2; nu = 2;

% assume variable ordering zi = [delta_i; xi+1] for i=1...N-1
stages = MultistageProblem(N);
for i = 1:N

% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nx; % number of lower bounds
stages(i).dims.u = nx; % number of upper bounds
stages(i).bidx = 1:nu; % index of binary variables

% cost
if( i == N )

stages(i).cost.H = blkdiag(Rtilde,P);
else

stages(i).cost.H = blkdiag(Rtilde,Q);
end
stages(i).cost.f = [ftilde; zeros(nx,1)];

% lower bounds
stages(i).ineq.b.lbidx = (nu+1):(nu+nx); % lower bound on states
stages(i).ineq.b.lb = xmin; % upper bound values

% upper bounds
stages(i).ineq.b.ubidx = (nu+1):(nu+nx); % upper bound for this stage variable
stages(i).ineq.b.ub = umax; % upper bound for this stage variable

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(nx,nu), A];
end
if( i>1 )

stages(i).eq.c = -Bconst;
end
stages(i).eq.D = [Btilde, -eye(nx)];

end

% RHS of first eq. constr. is a parameter: z1=-A*x0
params(1) = newParam('minusA_times_x0',1,'eq.c');

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

You can download the Python code of this example here.

Simulation result

When running the example, you should see the following closed-loop behavior:

Details on problem reformulation

The reformulation is done as follows: we introduce a variable 𝑑𝑒𝑙𝑡𝑎 such that

𝛿 = 0 ⇔ 𝑢 = 𝑢𝑚𝑖𝑛 and 𝛿 = 0 ⇔ 𝑢 = 𝑢𝑚𝑎𝑥
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This can be formulated by the equality constraint

𝑢 = 𝑢𝑚𝑖𝑛 + diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿

where diag denotes a diagonal matrix. To keep the number of variables at a minimum, we
will directly insert this equation into the dynamics:

𝑥+ = 𝐴𝑥+𝐵𝑢

= 𝐴𝑥+𝐵𝑢𝑚𝑖𝑛 +𝐵diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿

= 𝐴𝑥+ 𝐵̃𝛿 + 𝑏

where 𝐵̃ := 𝐵diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛) and 𝑏 := 𝐵𝑢𝑚𝑖𝑛.

Similarly for the cost function,

𝑢𝑇𝑅𝑢 = (𝑢𝑚𝑖𝑛 + diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿)𝑇𝑅(𝑢𝑚𝑖𝑛 + diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿)

= 𝛿𝑇diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝑅diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿 + 2𝑢𝑚𝑖𝑛diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝑅𝛿 + const

= 𝛿𝑇 𝑅̃𝛿 + 𝑓𝑇 𝛿 + const

where

𝑅̃ = diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝑅diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)

𝑓 = 2𝑅diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝑢𝑚𝑖𝑛
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11.2 Y2F interface: Basic example

Consider the following linear MPC problem with lower and upper bounds on state and inputs,
and a terminal cost term:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ 𝑥̄

𝑢 ≤ 𝑢𝑖 ≤ 𝑢̄

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to the
system after a solution has been obtained. Here we present the problem formulation with
YALMIP, how you can use Y2F to easily generate a solver with FORCESPRO, and how you can
use the resulting controller for simulation.

You can download the Matlab code of this example to try it out for yourself from https://raw.
githubusercontent.com/embotech/Y2F/master/examples/mpc_basic_example.m.

Important: Make sure to have YALMIP installed correctly (run yalmiptest to verify this).

11.2.1 Defining the problem data

Let’s define the known data of the MPC problem, i.e. the system matrices 𝐴 and 𝐵, the pre-
diction horizon 𝑁 , the stage cost matrices 𝑄 and 𝑅, the terminal cost matrix 𝑃 , and the state
and input bounds:

%% MPC problem data

% system matrices
A = [1.1 1; 0 1];
B = [1; 0.5];
[nx,nu] = size(B);

% horizon
N = 10;

% cost matrices
Q = eye(2);
R = eye(1);
if exist('dlqr', 'file')

[~,P] = dlqr(A,B,Q,R);
else

fprintf('Did not find dlqr (part of the Control Systems Toolbox). Will use
→˓10*Q for the terminal cost matrix.\n');

P = 10*Q;
end

% constraints
umin = -0.5; umax = 0.5;
xmin = [-5; -5]; xmax = [5; 5];

11.2.2 Defining the MPC problem

Let’s now dive in right into the problem formulation:
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%% Build MPC problem in Yalmip

% Define variables
X = sdpvar(nx,N+1,'full'); % state trajectory: x0,x1,...,xN (columns of X)
U = sdpvar(nu,N,'full'); % input trajectory: u0,...,u_{N-1} (columns of U)

% Initialize objective and constraints of the problem
cost = 0; const = [];

% Assemble MPC formulation
for i = 1:N

% cost
if( i < N )

cost = cost + 0.5*X(:,i+1)'*Q*X(:,i+1) + 0.5*U(:,i)'*R*U(:,i);
else

cost = cost + 0.5*X(:,N+1)'*P*X(:,N+1) + 0.5*U(:,N)'*R*U(:,N);
end

% model
const = [const, X(:,i+1) == A*X(:,i) + B*U(:,i)];

% bounds
const = [const, umin <= U(:,i) <= umax];
const = [const, xmin <= X(:,i+1) <= xmax];

end

Thanks to YALMIP, defining the mathematical problem is very much like writing down the
mathematical equations in code.

11.2.3 Generating a solver

We have now incrementally built up the cost and const objects, which are both YALMIP
objects. Now comes the magic: use the function optimizerFORCES to generate a solver for
the problem defined by const and cost with the initial state as a parameter, and the first
input move 𝑢0 as an output:

%% Create controller object (generates code)
% for a complete list of codeoptions, see
% https://www.embotech.com/FORCES-Pro/User-Manual/Low-level-Interface/Solver-
→˓Options
codeoptions = getOptions('simpleMPC_solver'); % give solver a name
controller = optimizerFORCES(const, cost, codeoptions, X(:,1), U(:,1), {'xinit'}, {
→˓'u0'});

That’s it! Y2F automatically figures out the structure of the problem and generates a solver.

11.2.4 Calling the generated solver

We can now use the controller object to call the solver:

% Evaluate controller function for parameters
[output,exitflag,info] = controller{ xinit };

or call the generated MEX code directly:

% This is an equivalent call, if the controller object is deleted from the
→˓workspace
[output,exitflag,info] = simpleMPC_solver({ xinit });
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Tip: Type help solvername to get more information about how to call the solver.

11.2.5 Simulation

Let’s now simulate the closed loop over the prediction horizon 𝑁 :

%% Simulate
x1 = [-4; 2];
kmax = 30;
X = zeros(nx,kmax+1); X(:,1) = x1;
U = zeros(nu,kmax);
problem.z1 = zeros(2*nx,1);
for k = 1:kmax

% Evaluate controller function for parameters
[U(:,k),exitflag,info] = controller{ X(:,k) };

% Always check the exitflag in case something went wrong in the solver
if( exitflag == 1 )

fprintf('Time step %2d: FORCES took %2d iterations and %5.3f ', k, info.it,
→˓info.solvetime*1000);

fprintf('milliseconds to solve the problem.\n');
else

info
error('Some problem in solver');

end

% State update
X(:,k+1) = A*X(:,k) + B*U(:,k);

end

11.2.6 Results

The results of the simulation are presented in Figure 11.8. The plot on the top shows the sys-
tem’s states over time, while the plot on the bottom shows the input commands. We can see
that all constraints are respected.

11.2.7 Variation 1: Parametric cost

One possible variation is if we consider the weighting matrices 𝑄, 𝑅 and 𝑃 as parameters, so
that we can tune them after the code generation. The following problem is solved at each
time step:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ 𝑥̄

𝑢 ≤ 𝑢𝑖 ≤ 𝑢̄

As usual, this problem is also parametric in the initial state 𝑥 and the first input 𝑢0 is applied to
the system after a solution has been obtained. To be able to define the weighting matrices𝑄,
𝑅 and 𝑃 as parameters, first we define them as sdpvars and then tell optmizerFORCES that
they are parameters:
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Figure 11.8: Simulation results of the states (top, in blue and red) and input (bottom, in blue)
over time. The state and input constraints are plotted in red dashed lines.

Chapter 11. Examples 139



FORCESPRO User Manual

% Cost matrices - these will be parameters later
Q = sdpvar(nx);
R = sdpvar(nu);
P = sdpvar(nx);

% [... formulate MPC problem in YALMIP ...]

% Define parameters and outputs
codeoptions = getOptions('parametricCost_solver'); % give solver a name
parameters = { X(:,1), Q, R, P };
parameterNames = { 'xinit', 'Q', 'R', 'P' };
outputs = U(:,1) ;
outputNames = {'controlInput'};
controller = optimizerFORCES(const, cost, codeoptions, parameters, outputs,
→˓parameterNames, outputNames);

You can download the Matlab code of this variation to try it out for yourself from https://raw.
githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_cost.m.

11.2.8 Variation 2: Time-varying dynamics

Another possible variation is if we consider the state-space dynamics matrices 𝐴 and 𝐵 as
parameters, so that we can change them after the code generation. The following problem
is solved at each time step:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ 𝑥̄

𝑢 ≤ 𝑢𝑖 ≤ 𝑢̄

As usual, this problem is also parametric in the initial state 𝑥 and the first input 𝑢0 is ap-
plied to the system after a solution has been obtained. To be able to define the state-space
dynamics matrices 𝐴 and 𝐵 as parameters, first we define them as sdpvars and then tell
optmizerFORCES that they are parameters:

A = sdpvar(nx,nx,'full'); % system matrix - parameter
B = sdpvar(nx,nu,'full'); % input matrix - parameter

% [... formulate MPC problem in YALMIP ...]

% Define parameters and outputs
codeoptions = getOptions('parametricDynamics_solver'); % give solver a name
parameters = { x0, A, B };
parameterNames = { 'xinit', 'Amatrix', 'Bmatrix' };
controller = optimizerFORCES(const, cost, codeoptions, parameters, U(:,1),
→˓parameterNames, {'u0'} );

You can download the Matlab code of this variation to try it out for yourself from https://raw.
githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_dynamics.m.

11.2.9 Variation 3: Time-varying constraints

One final variation is if we consider the constraint inequalities as parameters, so that we can
change them after the code generation. The inequalities are defined by a time-varying 2 × 2
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matrix that is defined by 2 parameters:

𝑅𝑘𝑥 ≤ 𝑅𝑘𝑥̄

where 𝑘 is the simulation step and the rotation matrix is defined by:

𝑅𝑘 =

[︂
cos(𝑘𝑤) − sin(𝑘𝑤)
sin(𝑘𝑤) cos(𝑘𝑤)

]︂
=

[︂
𝑟1 −𝑟2
𝑟2 𝑟1

]︂
where 𝑘 is the simulation step and 𝑤 a fixed number. Overall, the following problem is solved
at each time step:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ 𝑥̄

𝑢 ≤ 𝑢𝑖 ≤ 𝑢̄

𝑅𝑘𝑥𝑖 ≤ 𝑅𝑘𝑥̄

As usual, this problem is also parametric in the initial state 𝑥 and the first input 𝑢0 is applied
to the system after a solution has been obtained. To be able to define the rotation matrix 𝑅𝑘
as a parameter, first we define 𝑟1 and 𝑟2 as sdpvars and then tell optmizerFORCES that they
are parameters:

sdpvar r1 r2 % parameters for rotation matrix
R = [r1, -r2; r2, r1];

% [... formulate MPC problem in YALMIP ...]

% Define parameters and outputs
parameters = { X(:,1), r1, r2 };
parameterNames = { 'xinit', sprintf('cos(k*%4.2f)',w), sprintf('sin(k*%4.2f)',w) };
outputs = U(:,1);
outputNames = {'u0'};
controller = optimizerFORCES(const, cost, codeoptions, parameters, outputs,
→˓parameterNames, outputNames);

You can download the Matlab code of this variation to try it out for yourself from https://raw.
githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_inequalities.m.
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11.3 Y2F interface: Trajectory Optimization for Quadrotor
Flight

This is a more complex example optimizing the trajectory of a quadrotor within safe flight cor-
ridors. It follows the formulation give in S. Liu et al., “Planning Dynamically Feasible Trajecto-
ries for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1688-1695, July 2017 and makes the following as-
sumptions:

• The system is differentially flat, with flat outputs [𝑥, 𝑦, 𝑧, 𝜓]𝑇

• Piece-wise trajectory constrained by polytopes for each piece

• Trajectory segment parametrized as 𝑛-th order polynomial in time, separable in states

Based on those assumptions, the following convex QP problem needs to be solved in real-
time:

argmin
Φ

𝐽 =

𝑁−1∑︁
𝑖=0

Δ𝑡𝑖∫︁
0

⃦⃦⃦⃦
⃦ d4

d𝑡4
Φ𝑖(𝑡)

⃦⃦⃦⃦
⃦
2

d𝑡

subject to
d𝑘

d𝑡𝑘
Φ𝑖(∆𝑡𝑖) =

d𝑘

d𝑡𝑘
Φ𝑖+1(0) 𝑘 = 0, . . . , 4

𝐴𝑇𝑖 Φ𝑖(𝑡𝑠) < 𝑏𝑖 𝑡𝑠 = 0,∆𝑡𝑠, 2∆𝑡𝑠, . . . 𝑡𝑖+1 − 𝑡𝑖

Φ(𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Φ0(𝑡− 𝑡0) 𝑡0 ≤ 𝑡 < 𝑡1

Φ1(𝑡− 𝑡1) 𝑡1 ≤ 𝑡 < 𝑡2
...
Φ𝑁−1(𝑡− 𝑡𝑁−1) 𝑡𝑁−1 ≤ 𝑡 < 𝑡𝑁

with

Φ𝑖(𝑡) =

⎡⎢⎢⎣
𝑥Φ𝑖(𝑡)

𝑦Φ𝑖(𝑡)

𝑧Φ𝑖(𝑡)

𝜓Φ𝑖(𝑡)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑥𝑐

0
𝑖 𝑥𝑐

1
𝑖 𝑥𝑐

2
𝑖 . . . 𝑥𝑐

𝑛
𝑖

𝑦𝑐
0
𝑖 𝑦𝑐

1
𝑖 𝑦𝑐

2
𝑖 . . . 𝑦𝑐

𝑛
𝑖

𝑧𝑐
0
𝑖 𝑧𝑐

1
𝑖 𝑧𝑐

2
𝑖 . . . 𝑧𝑐

𝑛
𝑖

𝜓𝑐
0
𝑖 𝜓𝑐

1
𝑖 𝜓𝑐

2
𝑖 . . . 𝜓𝑐

𝑛
𝑖

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1
𝑡
𝑡2

...
𝑡𝑛

⎤⎥⎥⎥⎥⎥⎦
This problem has 4 * (𝑛 + 1) optimization variables. Here we present a problem formulation
with FORCESPRO’s Y2F interface for YALMIP and also show how you can use the resulting
controller for simulation.

You can download the code of this example to try it out for yourself (in MATLAB) by clicking
here.

Important: Make sure to have YALMIP installed correctly (run yalmiptest to verify this).
Visualizations of this example additionally require the MPT Toolbox and Matlab interface for
the CDD solver to be installed.

11.3.1 Defining the problem parameters

At the top of the example file, basic parameters are defined such number of states, the order
of the piece-wise polynomial basis functions and number of samples to check the constraints:
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%% Parameters
nStates = 4; % [-] Number of states

% Flat outputs [x position; y position; z position; yaw angle]
n = 8; % [-] Order of piece-wise polynomial used as basis function
nSample = 5; % [-] Number of intermediate samples (where constraints are
→˓checked)

withVisualization = true; % [-] Bool if MPT Toolbox for visualization is
→˓installed
bbConstr = false; % [-] true: bounding-box constraints (separable in
→˓coordinates) (n=7,8,9)

% false: Polyhedron along path (non-separable
→˓polytopic constraints) (n=8)

The quadrotor is supposed to fly along piece-wise segments in 3D space that are defined by
a list of way points:

%% WayPoints and time needed for segment
% Simple case with 3 segments
p0 = [0;0;0;0];
p1 = [1;1;1;0];
p2 = [3;1;1;pi];
p3 = [4;2;2;pi];

These waypoints are then used to construct artificial polyhedrons around each path segment.

11.3.2 Defining the MPC problem

Afterwards, YALMIP variables Z and T are defined, gathering the trajectory parameters and
the trajectory positions, respectively.

%% YALMIP Variables
Z = sdpvar((n+1)*nStates,N,'full'); % Trajectory parameters: z0,z1,...,z{N-1}
→˓(columns of Z for N stages/segm.)

% z_i = [c_0^x,c_1^x,...,c_n^x, ... (n-
→˓th order polynomials -> n+1 coeff.

% c_0^y,c_1^y,...,c_n^y, ...
% c_0^z,c_1^z,...,c_n^z, ...
% c_0^phi,c_1^phi,...,c_n^phi]
% where [x,y,z,phi] are the flat outputs (#

→˓of flat outputs == nStates)
T = sdpvar(nStates,N+1,'full'); % Trajcetory positions used as parameters

Afterwards, the QP formulation is setup in YALMIP syntax, including the quadratic cost func-
tion as well as various constraints.

11.3.3 Generating a solver

We have now incrementally built up the cost and constr objects, which are both YALMIP ob-
jects. Using the function optimizerFORCES to generate a solver named TrajOptQuadrotor
that will return the optimized coefficients 𝑧𝑜𝑝𝑡 as an output:

%% Generate Solver
codeoptions = getOptions('TrajOptQuadrotor'); % solverName
codeoptions.optlevel = 3;
codeoptions.timing = 1;
codeoptions.BuildSimulinkBlock = 0;

(continues on next page)

Chapter 11. Examples 143



FORCESPRO User Manual

(continued from previous page)

controller = optimizerFORCES(constr, cost, codeoptions, T, Z, {'wayPoints'}, {'z_
→˓opt'});

That’s it! Y2F automatically figures out the structure of the problem and generates a solver.

11.3.4 Calling the generated solver

We can now use the TrajOptQuadrotor object to call the solver:

%% Solve
[out_opt, exitflags, info] = TrajOptQuadrotor({pathSegments});

Tip: Type help TrajOptQuadrotor to get more information about how to call the solver.

11.3.5 Results

The example also includes additional lines of code to illustrate the results.

Figure 11.9 illustrates the quadrotor flight in 3D, while Figure 11.10 shows the individual trajec-
tories in time.

Figure 11.9: Quadrotor flight in 3D (green line) including waypoints/segments (dark blue) and
bounding boxes (light blue); also projected onto each dimension.
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Figure 11.10: Individual trajectories of the quadrotor flight in time for all three dimensions and
the angular orientation.
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11.4 Low-level interface: Active Suspension Control

11.4.1 Introduction

The concept of using future information, as described in the section How to Incorporate Pre-
view Information in the MPC Problem can be applied to more advanced systems. In this ex-
ample a driving vehicle is considered, equipped with sensors that measure the unevenness
of the road ahead as shown in the picture below.

Figure 11.11: Figure borrowed from [GörSch]

The preview information can be used to improve the riding comfort, i. e. minimize the heave,
pitch and roll accelerations, by actively controling the suspension of the vehicle. This example
is based on the reduced car model described in [GörSch]

The states 𝑥 of the system are ‘heave displacement’ 𝑧𝑏 [m], ‘pitch angle’ 𝜙 [rads], ‘roll angle’
𝜃 [rads], ‘heave velocity’ 𝑧̇𝑏 [m/s], ‘pitch rate’ 𝜙̇ [rads/s] and ‘roll rate’ 𝜙̇ [rads/s]. The input 𝑢 [m]
to the system are the ‘active spring displacements’. The output 𝑦 is given by the ‘heave ac-
celeration’ 𝑧𝑏 [m/s2], the ‘pitch acceleration’ 𝜙 [m/s2] and the ‘roll acceleration’ 𝜃 [m/s2]. In the
reduced model, the input contains not only the active spring displacements but also the
measurements of the height profile of the upcoming road 𝑤 and its first derivative 𝑤̇.

𝑥 :=

⎛⎜⎜⎜⎜⎜⎜⎝
heave displacement [m]

pitch angle [rads]
roll angle [rads]

heave velocity [m/s]
pitch rate [rads/s]
roll rate [rads/s]

⎞⎟⎟⎟⎟⎟⎟⎠
𝑢 :=

(︀
active spring displacements [m]

)︀
𝑦 :=

⎛⎝ heave acceleration [m/s2]
pitch acceleration [rads/s2]
roll acceleration [rads/s2]

⎞⎠
There are constraints on the actuators, i. e. minimal and maximal adjustment track, 𝑢 =
−0.04[𝑚] and 𝑢 = 0.04[𝑚]. This results in the following state space system:

𝑥̇(𝑡) = 𝐴𝑥(𝑡) +𝐵𝑢𝑢(𝑡) +𝐵𝑤

(︂
𝑤(𝑡)
𝑤̇(𝑡)

)︂
𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢(𝑡)

In the following it is shown how the FORCESPRO MATLAB Interface can be used to design a
controller using preview information, substantially increasing the riding comfort compared
to a vehicle with a passive suspension. The discrete vehicle model is sampled at 0.025 [s] and
it is assumed that road preview information for 0.5 [s] (20 steps) is available to the controller.

11.4.2 Disturbance Model: Speed Bump

The vehicle is assumed to be driving at a constant speed of 5 [m/s] over a speed bump of
length 1 [m] with a height of 0.1 [m]. The disturbance in time domain is depicted on the right
side. The road bump only hits the front right wheel, while the front left wheel is not affected.
The same bump will hit the rear right wheel 1.12 [s] after it hits the front wheel.
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11.4.3 Implementation of Preview Information

This is a linear MPC problem with lower and upper bounds on inputs and a terminal cost
term:

minimize 𝑥𝑇𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥𝑇𝑖 𝑄𝑥𝑖 + 𝑢𝑇𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖 +𝐵𝑤𝑤𝑖 +𝐵𝑤𝑤̇𝑖

𝑢 ≤ 𝑢𝑖 ≤ 𝑢

At each sampling instant the initial state 𝑥 and the preview information 𝑤𝑖 and 𝑤̇𝑖 change,
and the first input 𝑢0 is typically applied to the system after an optimal solution has been
obtained.

% Parameters: First Equation RHS
parameter(1) = newParam('minusA_times_x0_minusBw_times_w_pre',1,'eq.c');
% Paramteres: Preview Information
parameter(2) = newParam('pre2_w',2,'eq.c');
...
parameter(n) = newParam('pren_w',n,'eq.c');
...
parameter(N) = newParam('preN_w',N,'eq.c');

As described in the section How to Incorporate Preview Information in the MPC Problem, the
parametric additive terms g, which corresponds to the term 𝐵𝑤𝑤𝑖 + 𝐵𝑤𝑤̇𝑖, has to be defined.
At each stage of the multistage problem, the ‘g’ term (containing the preview information)
in the equality constraint is different, therefore we have to define a parameter for each stage.
In the definition of the parameters, ‘pren_w’ represents the name of the term 𝐵𝑤𝑤𝑛 + 𝐵𝑤𝑤̇𝑛
at stage 𝑛 of the multistage problem. During runtime, the preview information is mapped to
these parameters.

𝑁 is the length of the prediction horizon which is set to be equal to the preview horizon. The
MATLAB code below, generates the function VEHICLE_MPC_withPreview that takes -𝐴𝑥 and
the additive term g as a calling argument and returns 𝑢0, which can then be applied to the
system:

%% MPC with Preview
% FORCESPRO multistage form
% assume variable ordering zi = [ui; xi+1] for i=1...N-1

% Parameters: First Eq. RHS
parameter(1) = newParam('minusA_times_x0_minusBw_times_w_pre’,1,'eq.c’);

stages = MultistageProblem(N);
for i = 1:N

% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints

(continues on next page)
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stages(i).dims.l = nu; % number of lower bounds
stages(i).dims.u = nu; % number of upper bounds

% cost
if( i == N )

stages(i).cost.H = blkdiag(R,P);
else

stages(i).cost.H = blkdiag(R,Q);
end
stages(i).cost.f = zeros(nx+nu,1);

% lower bounds
stages(i).ineq.b.lbidx = 1:nu; % lower bound acts on these indices
stages(i).ineq.b.lb = umin*ones(4,1); % lower bound for the input signal

% upper bounds
stages(i).ineq.b.ubidx = 1:nu; % upper bound acts on these indices
stages(i).ineq.b.ub = umax*ones(4,1); % upper bound for the input signal

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(nx,nu), Ad];
end
stages(i).eq.D = [Bdu, -eye(nx)];

% Parameters for Preview
if( i < N )

parameter(i+1) = newParam(['pre’,num2str(i+1),’_w’],i+1,'eq.c’);
end

end

% define outputs of the solver
outputs(1) = newOutput('u0',1,1:nu);

% solver settings
codeoptions = getOptions('VEHICLE_MPC_withPreview');

% generate code
generateCode(stages,parameter,codeoptions,outputs);

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.4.4 Comparison of Passive Vehicle and Active Suspension Control Us-
ing Preview Information

In Figure 11.12, Figure 11.13 and Figure 11.14, the accelerations in the direction heave, pitch and
roll respectively are depicted. The blue graphs represent the controlled outputs while the
red ones show the uncontrolled accelerations. One can see that the vertical dynamics of the
vehicle are reduced substantially. There are smaller maximal accelerations and also less time
is required to regulate the accelerations back to zero.

Applying Model Predictive Control with Preview using FORCESPRO the riding comfort is im-
proved significantly with minimum effort for designing the controller and generating code
which can be deployed on any embedded automotive control unit.

The four graphs in Figure 11.15, Figure 11.16, Figure 11.17 and Figure 11.18 below show the input
signal on each of the four actuators. One can see that model predictive controller starts lifting
the front right part of the vehicle body as soon as the bump is in sight of the preview sensor,
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Figure 11.12: Acceleration in heave direction

Figure 11.13: Acceleration in pitch direction

Figure 11.14: Acceleration in roll direction
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i. e. at time 𝑡 = 0.3 [s]. This is 0.5 seconds, the length of the preview horizon, before the front
right wheel hits the bump at time 𝑡 = 0.8 [s]. This causes a better absorption of the shock and
therefore reduced accelerations. The input constraints are also satisfied and 𝑢 never exceeds
the admitted range.

Figure 11.15: Input front left actuator

Figure 11.16: Input front right actuator

11.5 Low-level interface: Robust estimation (Kalman filter)

11.5.1 System Description

In this example we consider the water tank system depicted on the right. Tank 1 has one input
flow and one output flow. Also tank 2 has one input flow and one output flow. Tank 3 has two
input flows and one output flow. The system dynamics are represented via the first equation
below. As an output 𝑧 we have a measurement of the level of tank 1 and of the level of tank 3.

𝑥+ = 𝐴𝑥+𝐵𝑢+ 𝑣 =

⎛⎝1 − 𝛼1 0 0
0 1 − 𝛼2 0
𝛼+ 𝛼2 1 − 𝛼3

⎞⎠𝑥+

⎛⎝0.5
0.5
0

⎞⎠𝑢+ 𝑣

𝑧 = 𝐻𝑥+ 𝑤 + 𝑦 =

(︂
1 0 0
0 0 1

)︂
𝑥+ 𝑤 + 𝑦

The states of the system are 𝑥 =
(︀
𝑥1 𝑥2 𝑥3

)︀𝑇 is given. There is a process noise 𝑣 and a mea-
surement noise 𝑤, both are Gaussian Random Variables with mean 0 and variance 𝑄 and 𝑅,
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Figure 11.17: Input rear left actuator

Figure 11.18: Input rear right actuator
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i. e. 𝑣 ∼ 𝒩 (0, 𝑄) and 𝑤 ∼ 𝒩 (0, 𝑅). The sparse signal 𝑦, which is used to model sensor failures,
distorts the measurement signal additionally.

The goal of this example is to show, that the standard Kalman Filter is not working that good
anymore if sensor failures are present. There does not exist an analytic solution to the prob-
lem if the disturbance 𝑦 is present. Using the robust Kalman Filter, i. e. replacing the stan-
dard measurement update step with an extended optimization problem, which is solved by
FORCESPRO, the filter is robust against 𝑦 and the estimated states are much more accurate
compared to the standard Kalman Filter. To process the measurement data online, the opti-
mization problem has to be solved in a sufficiently short amount of time.

11.5.2 Robust Kalman filter

Recall that the standard Kalman Filter, which would be applied if disturbance signal 𝑦 were
not present, consists of two steps: First a prediction step is made, where a predicted stated
𝑥𝑝(𝑘) is calculated based on the estimated state 𝑥𝑚(𝑘−1). Additionally, the predicted variance
𝑃𝑝(𝑘) gets calculated in the prediction step. The measurement step returns the variance𝑃𝑚(𝑘)
and the state esimate 𝑥𝑚(𝑘). This state estimate 𝑥𝑚(𝑘) is basically the solution of the optimiza-
tion problem

minimize 𝑤𝑇𝑅−1𝑤 + (𝑥− 𝑥̂𝑝)
𝑇𝑃−1(𝑥− 𝑥̂𝑝)

subject to 𝑧 = 𝐻𝑥+ 𝑤

In this example, we assume that out of 100 measurements the sensors of tank 1 gand tank
3 gives each 5 bogus signals. In order to make the state estimator robust against the sensor
failures 𝑦, we solve the following convex optimization problem at every time instance

minimize 𝑤𝑇𝑅−1𝑤 + (𝑥− 𝑥̂𝑝)
𝑇𝑃−1(𝑥− 𝑥̂𝑝) + 𝜆||𝑦||1

subject to 𝑧 = 𝐻𝑥+ 𝑤 + 𝑦

In the optimization problem 𝑤, 𝑥 and 𝑦 are optimization variables. The cost function of the
optimization problem is extended with the 𝑙1-penaltiy which is non-quadratic. The value 𝜆 ≥
0 is a tuning parameter. For 𝜆 large enough, the solution of the optimization problem has
𝑦 = 0 and therefore the estimates of the robust Kalman Filter coincides with the standard
Kalman Filter solution. This optimization problem can be transformed as described in here.
We transform this problem to the form required by FORCESPRO, which reads as

minimize
1

2
𝑧𝑇 𝐻̃𝑧 + 𝑓𝑇 𝑧

subject to 𝐷𝑧 = 𝑧

𝐴𝑧 ≤ 𝑏
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where the optimization variable is given by 𝑧 =
(︀
𝑥𝑇 𝑤𝑇 𝑦𝑇 𝑒𝑇

)︀𝑇 . Please find below the
MATLAB code to generate the solver for the optimization problem with FORCESPRO. The
covariance matrix𝑃−1 is updated at every time step and therefore the problem can’t be solved
explicitly. In this problem three parameters need to be defined, which are𝐻 , 𝑓 - containing the
predicted covariance and the predicated state - and 𝑐 - contains the current measurement.

% Create multistage struct
stages = MultistageProblem(1);

% Dimension
[ny nx] = size(H);
nw = ny;
ne = ny;
stages(1).dims.n = nx+nw+ny+ne; % number of stage variables
stages(1).dims.r = ny; % number of equality constraints
stages(1).dims.p = 2*ne; % number of polytopic constraints

% Ploytopic bounds
stages(1).ineq.p.A = [zeros(ny,nx), zeros(ny,nw), lambda*eye(ny), -eye(ne);...

zeros(ny,nx), zeros(ny,nw), -
→˓lambda*eye(ny), -eye(ne)];
stages(1).ineq.p.b = zeros(2*ne,1);

% Equality constraints
stages(1).eq.D = [H, eye(nw), eye(ny), zeros(ne)];

% Parameters
params(1) = newParam('H_i',1,'cost.H');
params(2) = newParam('f_i',1,'cost.f’);
params(3) = newParam('z_i',1,'eq.c');

% Output
outputs(1) = newOutput('x_hat_RKF',1,1:3);

% Code Generation
codeoptions = getOptions('Robust_KF');
generateCode(stages,params,codeoptions,outputs);

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.5.3 Simulation and Comparison

In the simulation the optimization problem has to be solved at every time instance. In the
prediction step the state 𝑥𝑝 is calculated based on the estimation of the current state. Also
the the variance is updated in every prediction step. In the measurement update step the
estimated state 𝑥𝑚 is calculated based on the predicted state, its predicted variance and the
current measurement 𝑧 by the function Robust_KF() generated by FORCESPRO.

for i = 2:(N+1)
% Prediction Step
x_p_RKF = Ak(:,:,i-1)*x_hat_RKF(:,i-1)+B*u(i-1);
P_p_RKF(:,:,i) = Ak(:,:,i-1)*P_hat_RKF(:,:,i-1)*Ak(:,:,i-1)' + Q;

% Measurement Update Step - Optimization Problem
problem.H_i = [2*inv(P_p_RKF(:,:,i)),zeros(nx,nw+ny+ne);...

zeros(ny,nx),2*R_inv,zeros(ny,ny+ne);...
zeros(ny+ne,nx+nw+ny+ne)];

problem.f_i = [-2*(inv(P_p_RKF)*x_p_RKF);...
zeros(nw,1);...

(continues on next page)
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zeros(ny,1);...
ones(ne,1)];

problem.z_i = z(:,i);
[solverout,exitflag,info] = Robust_KF(problem);
solve_time(1,i-1) = info.solvetime;
x_hat_RKF(:,i) = solverout.x_hat_RKF;
P_hat_RKF(:,:,i) = P_p_RKF(:,:,i);

end

In the plots in Figure 11.19, Figure 11.20 and Figure 11.21 respectively, the estimated states are
depicted. The estimates calculated via the robust Kalman Filter, in blue, are much more ac-
curate then the standard approach. The peaks in the red line indicate sensor failures against
which the standard Kalman Filter is not robust.

Figure 11.19: Estimated state 𝑥(1)

Figure 11.20: Estimated state 𝑥(2)

The impact on the RMS error magnitude of the robust Kalman Filter can be seen in the plots in
Figure 11.22, Figure 11.23 and Figure 11.24. The magnitude of the robust Kalman Filter depicted
in blue, is reduced by ∼ 65% for state 1, ∼ 12% for state 2, ∼ 61% for state 3 (this values vary).
Applying online optimization with FORCESPRO improves the quality of the state estimations
significantly.

With FORCESPRO convex optimization can be embedded directly in signal processing algo-
rithms that run online, with strict real-time deadlines, even at rates of tens of kilohertz. In this
example the optimization problem is solved in ∼ 0.1𝑚𝑠.
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Figure 11.21: Estimated state 𝑥(3)

Figure 11.22: RMS error for 𝑥(1)

Figure 11.23: RMS error for 𝑥(2)
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Figure 11.24: RMS error for 𝑥(3)

11.6 Low-level interface: Spacecraft Rendezvous

11.6.1 Introduction

This example uses the concepts described in the subsections HOW TO: Implement an MPC
Controller with a Time-Varying Model and How to Implement 1-Norm and Infinity-Norm Cost
Functions.

The goal is to design a controller to perform a spacecraft rendezvous operation, where a
controlled chaser spacecraft is performing rendezvous with a passive target that is orbiting
around Mars. Using a time-varying prediction model allows to perform spacecraft maneou-
vers in elliptical orbits and allows the controller to be updated when the are changes in the
system parameters or control objectives. This example is based on the models described in
[HarMac14] and the references therein.

11.6.2 Model

The Yamanaka-Ankersen (Y-A) equations are used to describe the dynamics, where the six
states x of the system represent the relative position and velocity of the chaser with respect
to the target in the three dimensions. These equations apply in elliptical orbits, but are time-
varying in terms of the true anomaly, 𝑣, of the target, i.e. the model is given by

𝑥𝑘+1 = 𝐴(𝑣)𝑥𝑘 +𝐵(𝑣)𝑢𝑘

and the requirement is that the state at the end of the horizon is at the target. The plant input
is modeled as an impulsive change in velocity, such that

𝐵(𝑣) = 𝐴(𝑣)

(︂
0
𝐼3

)︂
You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.6.3 Constraints

The three impulsive control inputs can give a maximum change in velocity of 5 meters per
second along each axis. In addition, the chaser spacecraft is required to remain within a cone
of vision of 20 degrees from the target and must not go behind the target to facilitate the
docking maneuver.
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11.6.4 Objective

The goal of the controller is to balance the following objectives:

• the chaser should be always as close as possible to the target,

• use as little fuel as possible to get there.

The second objective is more important, hence it is weighed higher. We consider two types of
cost functions: one where all the terms are weighed using standard quadratic penalties; and
one where the inputs are penalised using the 1-norm, which better reflects the propellant
consumption being directly proportional to delivered thrust and also attempts to minimise
the use of the actuators. In order to implement the 1-norm cost we need to add slack variables
and additional constraints as described in How to Implement 1-Norm and Infinity-Norm Cost
Functions.

The following code shows how to generate an MPC controller for the spacecraft rendezvous
problem with a time-varying model and a 1-norm penalty on the actuators.

%% MPC with Preview
% FORCESPRO multistage form
% assume variable ordering zi = [ui; xi+1, eui] for i=1...N-1

% Parameters: First Eq. RHS
parameter(1) = newParam('minusA_times_x0’,1,'eq.c’);

stages = MultistageProblem(N);
for i = 1:N

% dimension
stages(i).dims.n = nx+2*nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nu; % number of lower bounds
stages(i).dims.u = nu; % number of upper bounds
stages(i).dims.p = 3+2*nu; % number of polytopic constraints

% cost
stages(i).cost.H = blkdiag(zeros(nu),Q,zeros(nu));
stages(i).cost.f = [zeros(nu,1); -Q*xs; ones(nu,1)];

% lower bounds
stages(i).ineq.b.lbidx = 1:nu; % lower bound acts on these indices
stages(i).ineq.b.lb = umin*ones(4,1); % lower bound for the input signal

% upper bounds
stages(i).ineq.b.ubidx = 1:nu; % upper bound acts on these indices
stages(i).ineq.b.ub = umax*ones(4,1); % upper bound for the input signal

% polytopic bounds
stages(i).ineq.p.A = [ zeros(3,nu), Hx, zeros(3,nu); ...

R, zeros(nu,nx), -eye(nu); ...
-R, zeros(nu,nx), -eye(nu)];

stages(i).ineq.p.b = [ hx; R*us; -R*us ];

% equality constraints
if( i < N )

params(end+1) = newParam(['C_',num2str(i)],i,'eq.C');
end
params(end+1) = newParam(['D_',num2str(i)],i,'eq.D');
if( i > 1 )

params(end+1) = newParam(['pre’,num2str(i+1),’_w’],i+1,'eq.c’);
end

(continues on next page)
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(continued from previous page)

end

11.6.5 Spacecraft Rendezvous Manoeuvers with and without 1-Norm
Cost

The simulation describes a rendezvous maneover were the chaser starts 15km away from the
target spacecraft and the goal is to approach the target to within 1000 meter distance, while
respecting the constraints, to start the docking maneuver. The target is modeled as being
in a Keplerian orbit around Mars with an orbital radius of 3,600,000 meters. The controller
sampling time is 200s but the target and chaser dynamics are simulated in intervals of 1s for
illustration purposes. The plots in Figure 11.25 illustrates the behaviour of the controlled space-
craft with standard quadratic cost, while the plots in Figure 11.26 shows the behaviour of the
controller when the quadratic cost on the actuators is swapped with a 1-norm penalty. Notice
the sparsity in the actuation commands - the thrusters are only engaged when necessary to
keep the spacecraft within the cone of visibility of the target.

Figure 11.25: Behaviour with quadratic cost.

11.7 Low-level interface: DC/DC converter

11.7.1 Example Overview

The example starts by describing the power electronics of the DC/DC converter and how the
control oriented model of the system is derived. Then the potential advantages of model
predictive control over a conventional PI controller are discussed. Afterwards the design of
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Figure 11.26: Behaviour with cost given by 1-norm.

the MPC controller using FORCESPRO is presented. Finally, the simulation setup is explained
and the simulation results using PI and MPC are compared.

• Introduction: General introduction to the example.

• Control Objective: What can be gained by applying MPC with FORCESPRO.

• MPC via FORCESPRO: How to generate a solver with FORCESPRO for the power elec-
tronic converter.

• Simulation: Illustration on how to simulate the system with the generated controller.

• Comparison: Discussion of the results of the simulation.

11.7.2 Special Requirements

For the simulation of the power electronic converter in this example PLEXIM provided their
software PLECS®. PLECS® is the tool for high-speed simulations of power electronic systems.
To simulate this example, PLECS Blockset with a viewer licence is required. Please follow the
instructions on how to install PLECS® below.

PLECS Blockset installation instructions:

• Download PLECS® Blockset installation script available from here.

• Download the required PLECS® Blockset package file here and save it in the same di-
rectory as the file installplecs.m.

• Run the file installplecs.m in MATLAB® from the command line.

• During the installation a dialog asks where to save ‘PLECS’. Choose a location which is
in the MATLAB® search path.
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• During the installation a dialog asks for a license. Install the ‘viewer license’ as shown in
the figures below.

Once the installation is completed you are ready to simulate the files provided with this ex-
ample.

11.7.3 Introduction - Control of a DC/DC Converter

An important field of application for model predictive control are power electronic systems.
In this example a typical DC/DC converter which supplies an isolated DC voltage to a telecom
system is considered. Assume that the input voltage of the two-transistor forward converter,
depicted below on the left, is a constant voltage 𝑈𝐼𝑁 delivered by a previous PFC rectifier
stage. The load attached to the converter has an ohmic-capacitive characteristic.

This two-transistor forward converter can be modelled as a buck converter from which it is
more convenient to derive a control oriented model. The buck converter has only one switch
and the input voltage 𝑈𝑖𝑛 is the actual input voltage scaled by the transformer turn ratio. The
equivalent circuit is depicted on the right in the figure below.

Figure 11.27: Based on the lecture material Power Electronic Systems II, Institute for Power
Electronic Systems, ETH Zürich

The states of the control oriented model, which is used as a model for the predictive controller,
are the inductor current 𝑖𝐿 and the capacitor voltage 𝑢𝐶 . Further there are the input signal d
and the disturbances in the input voltage and the load current𝑤 =

(︀
𝑢𝑖𝑛 𝑖𝐿𝑜𝑎𝑑

)︀𝑇 . As an output
signal the states 𝑖𝐿 and 𝑢𝐶 as well as the output voltage uout are considered. The small signal
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model (small signals are marked with a hat) in state-space form reads as:

𝑑

𝑑𝑡
𝑥̂ =

(︂
−𝑅
𝐿 − 1

𝐿
1
𝐶 0

)︂
𝑥̂+

(︂
𝑈𝑖𝑛

𝐿
0

)︂
𝑑+

(︂
𝐷
𝐿 −𝑅

𝐿
0 − 1

𝐶

)︂
𝑤̂

𝑦 =

⎛⎝1 0
0 1
𝑅 1

⎞⎠ 𝑥̂+

⎛⎝0 0
0 0
0 −𝑅

⎞⎠ 𝑤̂

⇑⃦⇓
𝑑

𝑑𝑡
𝑥̂ = 𝐴 · 𝑥̂+𝐵1 · 𝑢+𝐵2 · 𝑤̂

𝑦 = 𝐶 · 𝑥̂+

(︂
𝐷2
𝐷4

)︂
· 𝑤̂

11.7.4 Control Objective by Using Model Predictive Control

The converter should provide a constant output voltage 𝑈𝑂𝑢𝑡 of 60 V while delivering the
power required by the load. The nominal load current 𝐼𝐿𝑜𝑎𝑑 is 22 A. The input voltage 𝑈𝑖𝑛 is
constant at level 144 V, while the load resistance varies in the range [1.5, 5]Ω.

Conventionally the output voltage of the Buck Converter was controlled by a PI controller. In
the first plot below, the current 𝑖𝐿 in the inductor is shown, when the resistance in the load is
reduced from 5Ω to 1.5Ω, i. e. from upper bound to the lower bound of the possibly required
load resistance. The red curve represents the current in the inductor. Also the change in the
output voltage is depicted when changing the load resistance.

Figure 11.28: Inductor current vs. time

Figure 11.29: Output voltage vs. time

From Figure 11.28 and Figure 11.29 one can see that the current in the inductor has a high
overshoot and the output voltage has a relatively long settling time when a change in the
load resistance occures.
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Important: Some of the potential benefits of model predictive cotrol are the following

• Below it is shown that the size of the converter can be reduced by using a MPC controller
designed with FORCESPRO. With the MPC controller it will be possible to limit the cur-
rent in the inductor. With the warranty that the current does not exceed a certain upper
bound, a smaller inductor can be built in and the costs are reduced.

• Also the controller designed with FORCESPRO will calculate the optimal input at every
time step. The performance of the system is increased, i. e. less overshoot and faster
settling time.

11.7.5 Model Predictive Control Design via FORCESPRO MATLAB® Inter-
face

To design the FORCESPRO controller, the MPC setup has to be definded first. Below the re-
quirements are shown. A prediction horizon of 25 is choosen. In the cost function𝑅 penalizes
the deviation of the input signal from its reference value. The matrix𝑄penalizes the deviation
of the states from its reference values. Notice that𝑄 is defined such that a deviation of the in-
ductor current to its reference value is less penalized than a deviation of the output voltage to
its reference value. The input signal 𝑑 to the PWM is limited to [0, 1], while the inductor current
should not exceed a current of 42 A. This overshoot limitation concerns the average inductor
current. Below one can see, that this limit is exceeded by half of the currents peak-to-peak
value. The constraints are consistently defined with the model, i. e. a current reduction by -20
A and a current enhancement by 20 A is allowed at most. This is equivalent to a current in
the inductor in the range of [2, 42] A.

% MPC Setup
N = 25;
Q = [.01, 0; 0, 10];
R = 1;
nx = 2;
nu = 1;

% Constraints
umin = 0;
umax = 1;
xmin = -20;
xmax = 20;

Next, the multistage problem is formulated. In this example, there exists a linear term 𝑓 in
the cost function due to the variable load, i. e. the steady-state inductor current changes. The
cost function therefore reads as

(𝑥+ − 𝑥𝑟𝑒𝑓 )𝑇𝑄(𝑥+ − 𝑥𝑟𝑒𝑓 ) + (𝑢− 𝑢𝑟𝑒𝑓 )𝑇𝑅(𝑢− 𝑢𝑟𝑒𝑓 )

To solve the optimization problem, the reference values need to be re-calculated at every time
step. Below the parameters of the problem are marked red. The optimization variable of the
multistage problem is 𝑧𝑖 =

(︀
𝑢𝑖 𝑥𝑖+1

)︀𝑇 , where 𝑢 is the input signal given to the system.

minimize
𝑁∑︁
𝑖=1

1

2
𝑧𝑇𝑖 𝐻𝑖𝑧𝑖 + 𝑓𝑇𝑖 𝑧𝑖 (separable objective)

subject to 𝐷1𝑧1 = 𝑐1 (initial equality)
𝐶𝑖−1𝑧𝑖−1 +𝐷𝑖𝑧𝑖 = 𝑐𝑖 (inter-stage equality)
𝑧𝑖 ≤ 𝑧𝑖 ≤ 𝑧𝑖 (bounds)

In this example three parameters have to be given to the solver.
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• parameter(1): Represents the right hand side of the initial equality of the problem in
standard form above.

• parameter(2): The linear term 𝑓 of the cost function. This term contains the reference
values of the states which are calculated based on the resistance of the load.

• parameter(3): Represents the right hand side of the inter-stage equality constraint for
the stages 𝑖 = 2 : 𝑁 of the problem.

Next to the parameters, the dimensions of the variables, the equality constraints and the
bounds have to be defined. The values defined in the MPC setup are added to the multi-
stage problem in the section ‘cost’. The terms in the equality constraints which are constant
over all stages are defined in the section ‘equality constraints’. After defining the output of
the solver and the solver settings, the code for the controller can be generated.

%% Multistage Problem
% get stages struct of length N
stages = MultistageProblem(N);

% RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0 - B2*w
parameter(1) = newParam('minusAx0_minusB2w',1,'eq.c');

% Linear Term depends on x_ref and u_ref
parameter(2) = newParam('Linear_Term',1:N,'cost.f');

% RHS of equality constraints for remaining stages: stages(i).eq.c = - B2*w
parameter(3) = newParam('minusB2w',2:N,'eq.c');

for i = 1:N

% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = 2; % number of lower bounds
stages(i).dims.u = 2; % number of upper bounds

% cost
tages(i).cost.H = blkdiag(R,Q);

% lower bounds
stages(i).ineq.b.lbidx = 1:2; % lower bound acts on these indices
stages(i).ineq.b.lb = [umin; xmin]; % lower bound on input u and state iL

% upper bounds
stages(i).ineq.b.ubidx = 1:2; % upper bound acts on these indices
stages(i).ineq.b.ub = [umax; xmax]; % upper bound on input u and state iL

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(nx,nu), Ad];
end
stages(i).eq.D = [Bd1, -eye(nx)];

end

% define outputs of the solver
outputs(1) = newOutput('u0',1,1);

% solver settings
codeoptions = getOptions('DCDC_FORCES_Pro_Controller');

% generate code
generateCode(stages,parameter,codeoptions,outputs);
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You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.7.6 Simulation of the PLECS® Model with Model Predictive Control

After the code is generated, the FORCESPRO Simulink® block can be added to
the model DCDC_FORCES_Pro_viewer.slx as shown in the figure below (copy/paste
it from the file DCDC_FORCES_Pro_Controllercompact_lib.mdl in the folder
DCDC_FORCES_Pro_Controller/Interface generated by FORCESPRO).

The controller has a frequency of 100 kHz. To simulate the system with a time step of 1𝑒− 7𝑠,
rate transition blocks are used. Below the Simulink®model DC_DC_FORCES_Pro.slxwith the
PLECS® circuit and the FORCESPRO controller is depicted.

In the grey box in the model depicted above, the three parameters which are the input to the
FORCESPRO controller, are calculated.

• parameter(1): The right hand side of the initial equality constraint is −𝐴𝑑 · 𝑥−𝐵𝑑2 · 𝑤.

• parameter(2): For the linear term of the cost function the reference values for the states
and the input signal need to be calculated.

The reference values are calculated by solving the linear system(︂
𝐴𝑑− 𝐼 𝐵𝑑1
𝐶𝑑2 𝐷𝑑3

)︂
·
(︂
𝑥𝑟𝑒𝑓
𝑢𝑟𝑒𝑓

)︂
=

(︂
−𝐵𝑑2 · 𝑤

𝑈𝑜𝑢𝑡,𝑟𝑒𝑓 −𝐷𝑑4 · 𝑤

)︂
which follows from the system equations in steady-state. To calculate the linear term f the
reference values are plugged into the linear term 𝑓 =

(︀
−𝑢𝑟𝑒𝑓 ·𝑅 −𝑥𝑇𝑟𝑒𝑓 ·𝑄

)︀𝑇 , which is equal
to

𝑓 =

(︂
𝐴𝑑− 𝐼 𝐵𝑑1
𝐶𝑑2 𝐷𝑑3

)︂−1

·
(︂

0 −𝐵𝑑2
1 −𝐷𝑑4

)︂
·
(︂
𝑈𝑜𝑢𝑡,𝑟𝑒𝑓

𝑤

)︂
·
(︂

0 −𝑅
−𝑄 0

)︂
The matrices in the derivation above are explained in more detail in the system presented in
the code available for this example.

• parameter(3) is equal to −𝐵𝑑2 · 𝑤.
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11.7.7 Comparison of Model Predictive Control and PI Control

In the Figure 11.30 and Figure 11.31 below the evolution of the inductor current and the output
voltage are compared when controlling the system with PI and with the MPC controller de-
signed using FORCESPRO. It can be seen that the MPC controller is able to keep the inductor
current within the limits defined above. However, this limits the tracking speed of the output
voltage in the corresponding time interval. Overall, the tracking performance of the output
voltage is increased compared to the baseline PI controller.

Figure 11.30: Inductor current vs. time

Figure 11.31: Output voltage vs. time

11.8 High-level interface: Basic example

Consider the following linear MPC problem with lower and upper bounds on state and inputs,
and a terminal cost term:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ 𝑥̄

𝑢 ≤ 𝑢𝑖 ≤ 𝑢̄

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to the
system after a solution has been obtained.

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.
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11.8.1 Defining the problem data

Let’s define the known data of the MPC problem, i.e. the system matrices 𝐴 and 𝐵, the pre-
diction horizon 𝑁 , the stage cost matrices 𝑄 and 𝑅, the terminal cost matrix 𝑃 , and the state
and input bounds:

%% system
A = [1.1 1; 0 1];
B = [1; 0.5];
[nx,nu] = size(B);

%% MPC setup
N = 10;
Q = eye(nx);
R = eye(nu);
if( exist('dlqr','file') )

[~,P] = dlqr(A,B,Q,R);
else

P = 10*Q;
end
umin = -0.5; umax = 0.5;
xmin = [-5, -5]; xmax = [5, 5];

11.8.2 Defining the MPC problem

Let’s now dive in right into the problem formulation:

%% FORCES multistage form
% assume variable ordering zi = [ui; xi] for i=1...N

% dimensions
model.N = 11; % horizon length
model.nvar = 3; % number of variables
model.neq = 2; % number of equality constraints

% objective
model.objective = @(z) z(1)*R*z(1) + [z(2);z(3)]'*Q*[z(2);z(3)];
model.objectiveN = @(z) z(1)*R*z(1) + [z(2);z(3)]'*P*[z(2);z(3)];

% equalities
model.eq = @(z) [ A(1,:)*[z(2);z(3)] + B(1)*z(1);

A(2,:)*[z(2);z(3)] + B(2)*z(1)];

model.E = [zeros(2,1), eye(2)];

% initial state
model.xinitidx = 2:3;

% inequalities
model.lb = [ umin, xmin ];
model.ub = [ umax, xmax ];

11.8.3 Generating a solver

We have now populated model with the necessary fields to generate a solver for our problem.
Now we use the function FORCES_NLP to generate a solver for the problem defined by model
with the first state as a parameter:
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%% Generate FORCES solver

% get options
codeoptions = getOptions('FORCESNLPsolver');
codeoptions.printlevel = 2;

% generate code
FORCES_NLP(model, codeoptions);

11.8.4 Calling the generated solver

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it:

problem.x0 = zeros(model.N*model.nvar,1);
problem.xinit = xinit;
[solverout,exitflag,info] = FORCESNLPsolver(problem);

Tip: Type help solvername to get more information about how to call the solver.

11.8.5 Simulation

Let’s now simulate the closed loop over the prediction horizon 𝑁 :

%% simulate
x1 = [-4; 2];
kmax = 30;
X = zeros(2,kmax+1); X(:,1) = x1;
U = zeros(1,kmax);
problem.x0 = zeros(model.N*model.nvar,1);
for k = 1:kmax

problem.xinit = X(:,k);

[solverout,exitflag,info] = FORCESNLPsolver(problem);

if( exitflag == 1 )
U(:,k) = solverout.x01(1);
solvetime(k) = info.solvetime;
iters(k) = info.it;

else
error('Some problem in solver');

end

%X(:,k+1) = A*X(:,k) + B*U(:,k);
X(:,k+1) = model.eq( [U(:,k);X(:,k)] )';

end

11.8.6 Results

The results of the simulation are presented in Figure 11.8. The plot on the top shows the sys-
tem’s states over time, while the plot on the bottom shows the input commands. We can see
that all constraints are respected.
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Figure 11.32: Simulation results of the states (top, in blue and red) and input (bottom, in blue)
over time. The state and input constraints are plotted in red dashed lines.
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11.9 High-level interface: Obstacle avoidance (MATLAB &
Python)

In this example we illustrate the simplicity of the high-level user interface on a vehicle optimal
trajectory generation problem. The user can place an obstacle in front of the vehicle using an
interactive window and the car trajectory is automatically adjusted.

In particular, we use a kinematic bicycle model described by a set of ordinary differential
equations (ODEs):

𝑥̇ = 𝑣 cos(𝜃 + 𝛽)

𝑦̇ = 𝑣 sin(𝜃 + 𝛽)

𝑣̇ =
𝐹

𝑚

𝜃 =
𝑣

𝑙𝑟
sin(𝛽)

𝛿̇ = 𝜑

with:

𝛽 = arctan(
𝑙𝑟

𝑙𝑟 + 𝑙𝑓
tan(𝛿))

The model consists of five differential states: 𝑥 and 𝑦 are the Cartesian coordinates of the car,
and 𝑣 is the linear velocity. The angles 𝜃 and 𝛿 denote the heading angle of the car and its
steering anlge. Next, there are two control inputs to the model: the acceleration force 𝐹 and
the steering rate 𝜑. The angle 𝛽 describes the direction of movement of the car’s center of
gravity relative to the heading angle 𝜃. The remaining three constant paramenters of the
system are the car mass 𝑚 = 1 kg, and the lengths 𝑙𝑟 = 0.5 m and 𝑙𝑓 = 0.5 m specifying the
distance from the car’s center of gravity to the rear wheels and the front wheels, respectively.

The trajectory of the vehicle will be defined as an NLP. First, we define stage variable 𝑧 by
stacking the input and differential state variables:

𝑧 = [𝐹, 𝜑, 𝑥, 𝑦, 𝑣, 𝜃, 𝛿]⊤

You can find the code of this example to try it out for yourself in the examples folder that
comes with your client.

11.9.1 Defining the MPC Problem

Objective

In this example the cost function provided by model.objective is the same for all stages.
We have a target position (3, 0) and we want to minimize the distance of the car to that point.
Therefore, the distance is penalized with linear costs. Plus, some small quadratic costs are
added to the inputs 𝐹 and 𝑠, i.e.:

𝑓(𝑧) = 100|𝑧3 − 0| + 100|𝑧4 − 3| + 0.1𝑧21 + 0.01𝑧22

The stage cost function is coded in MATLAB and Python as the following function:

Matlab

Python
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model.objective = @objective

function f = objective(z)
F = z(1);
phi = z(2);
x = z(3)
y = z(4);
f = 100*abs(x-0) + 100*abs(y-3) + 0.1*F^2 + 0.01*phi^2;

end

model = forcespro.nlp.SymbolicModel() # create empty model
model.objective = lambda z: 100 * casadi.fabs(z[2] - 0.) \

+ 100 * casadi.fabs(z[3] - 3.) \
+ 0.1 * z[0]**2 + 0.01 * z[1]**2

Matrix equality constraints

The matrix equality constraints model.eq in this example result from the vehicle’s dynamics
given above. First, the continuous dynamic equations are implemented as follows:

Matlab

Python

function [xDot] = continuousDynamics(x,u)
% state x = [xPos,yPos,v,theta,delta], input u = [F, phi]

% set physical constants
l_r = 0.5; % distance rear wheels to center of gravity of the car
l_f = 0.5; % distance front wheels to center of gravity of the car
m = 1.0; % mass of the car

% set parameters
beta = atan(l_r/(l_f + l_r) * tan(x(5)));

% calculate dx/dt
xDot = [x(3) * cos(x(4) + beta); % dxPos/dt = v*cos(theta+beta)

x(3) * sin(x(4) + beta); % dyPos/dt = v*cos(theta+beta)
u(1)/m; % dv/dt = F/m
x(3)/l_r * sin(beta); % dtheta/dt = v/l_r*sin(beta)
u(2)]; % ddelta/dt = phi

end

def continuous_dynamics(x, u):
""" state x = [xPos,yPos,v,theta,delta], input u = [F,phi]"""

# set physical constants
l_r = 0.5 # distance rear wheels to center of gravitiy of the car
l_f = 0.5 # distance front wheels to center of gravitiy of the car
m = 1.0 # mass of the car

# set parameters
beta = casadi.arctan(l_r/(l_f + l_r) * casadi.tan(x[4]))

# calculate dx/dt
return np.array([x[2] * casadi.cos(x[3] + beta), # dxPos/dt = v*cos(theta+beta)

x[2] * casadi.sin(x[3] + beta), # dyPos/dt = v*sin(theta+beta)
u[0] / m, # dv/dt = F/m
x[2]/l_r * casadi.sin(beta), # dtheta/dt = v/l_r*sin(beta)
u[1]]) # ddelta/dt = phi
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Now, these continuous dynamics are discretized using an explicit Runge-Kutta integrator of
order 4 as shown below. Note that the function RK4 is included in the FORCESPRO client
software.

Matlab

Python

integrator_stepsize = 0.1;
% z(3:7) = states x, z(1:2) = inputs u
model.eq = @(z) RK4(z(3:7), z(1:2), @continuousDynamics, integrator_stepsize);

integrator_stepsize = 0.1
# z[2:7] = states x, z[0:2] = inputs u
model.eq = lambda z: forcespro.nlp.integrate(continuous_dynamics, z[2:7], z[0:2],

integrator=forcespro.nlp.integrators.
→˓RK4,

stepsize=integrator_stepsize)

As a last step, the indices of the left hand side of the dynamical constraint are defined. For
efficiency reasons, make sure the matrix has structure [0 I].

Matlab

Python

model.E = [zeros(5,2), eye(5)];

model.E = np.concatenate([np.zeros((5,2)), np.eye(5)], axis=1)

Runtime Parameters

The user can place an obstacle to be avoided in front of the car. The x- and y-coordinates of
the position 𝑝 of this obstacle are considered as runtime parameters of the system.

𝑝 = [𝑝𝑥, 𝑝𝑦]⊤

The runtime parameters are the same for all stages. Their values will be set later on at runtime.

Inequality constraints

The maneuver is subjected to a set of constraints, involving both the simple bounds:

−5 N ≤𝐹 ≤ 5 N

−40 deg/s ≤𝜑 ≤ 40 deg/s

−3 m ≤𝑥 ≤ 0 m

0 m ≤𝑦 ≤ 3 m

0 m/s ≤𝑣 ≤ 2 m/s

− inf ≤𝜃 ≤ inf

−0.48𝜋 rad ≤𝛿 ≤ 0.48𝜋 rad

as well the nonlinear nonconvex constraints in dependence of the runtime parameters 𝑝

1 m2 ≤𝑥2 + 𝑦2 ≤ 9 m2

0.72 m2 ≤(𝑥− 𝑝𝑥)2 + (𝑦 − 𝑝𝑦)2
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The implementation of the simple bounds is given here:

Matlab

Python

% upper/lower variable bounds lb <= z <= ub
% inputs | states
% F phi x y v theta delta
model.lb = [ -5.0, deg2rad(-40), -3., 0., 0., -inf, -0.48*pi];
model.ub = [ +5.0, deg2rad(+40), 0., 3., 2., +inf, 0.48*pi];

# upper/lower variable bounds lb <= z <= ub
# inputs | states
# F phi x y v theta delta
model.lb = np.array([-5., np.deg2rad(-40.), -3., 0., 0, -np.inf, -0.48*np.
→˓pi])
model.ub = np.array([+5., np.deg2rad(+40.), 0., 3., 2., np.inf, 0.48*np.
→˓pi])

The nonlinear constraint function ℎ with its bounds can be coded in MATLAB/Python as fol-
lows:

Matlab

Python

% General (differentiable) nonlinear inequalities hl <= h(x,p) <= hu
model.ineq = @(z,p) [ z(3)^2 + z(4)^2; % x^2 + y^2

(z(3)-p(1))^2 + (z(4)-p(2))^2 ]; % (x-p_x)^2 + (y-p_y)^2

% Upper/lower bounds for inequalities
model.hu = [9, +inf]';
model.hl = [1, 0.7^2]';

# General (differentiable) nonlinear inequalities hl <= h(x,p) <= hu
model.ineq = lambda z,p: np.array([z[2]**2 + z[3]**2, # x^2 + y^2

(z[2] - p[0])**2 + (z[3] - p[1])**2]) # (x-p_x)^2
→˓+ (y-p_y)^2

# Upper/lower bounds for inequalities
model.hu = np.array([9, +np.inf])
model.hl = np.array([1, 0.7**2])

Dimensions

Furthermore, the number of variables, constraints and real-time parameters explained above
needs to be provided as well as the length of the multistage problem. For this example, we
chose to use 𝑁 = 50 stages in the NLP:

Matlab

Python

model.N = 50; % horizon length
model.nvar = 7; % number of variables
model.neq = 5; % number of equality constraints
model.nh = 2; % number of inequality constraint functions
model.npar = 2; % number of runtime parameters
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model.N = 50 # horizon length
model.nvar = 7 # number of variables
model.neq = 5 # number of equality constraints
model.nh = 2 # number of inequality constraint functions
model.npar = 2 # number of runtime parameters

Initial conditions

The goal of the maneuver is to steer the vehicle from a set of initial conditions:

𝑥init = −2 m, 𝑦init = 0 m, 𝑣init = 0 m/s, 𝜃init = 0.5𝜋 rad, , 𝛿init = 0 rad

For the code generation, only the indices of the variables to which initial values will be applied
are required. This is coded as follows:

Matlab

Python

model.xinitidx = 3:7;

model.xinitidx = range(2,7)

11.9.2 Generating a solver

We have now populated model with the necessary fields to generate a solver for our problem.
Now we set some options for our solver and then use the function FORCES_NLP to generate a
solver for the problem defined by model:

Matlab

Python

%% Define solver options
codeoptions = getOptions('FORCESNLPsolver');
codeoptions.maxit = 400; % Maximum number of iterations
codeoptions.printlevel = 0;
codeoptions.optlevel = 0; % 0: no optimization, 1: optimize for
→˓size, 2: optimize for speed, 3: optimize for size & speed
codeoptions.printlevel = 0;
codeoptions.nlp.bfgs_init = 3.0*eye(7); % set initialization of the hessian
→˓approximation

%% Generate forces solver
FORCES_NLP(model, codeoptions);

# Set solver options
codeoptions = forcespro.CodeOptions('FORCESNLPsolver')
codeoptions.maxit = 400 # Maximum number of iterations
codeoptions.printlevel = 0
codeoptions.optlevel = 0 # 0 no optimization, 1 optimize for
→˓size, 2 optimize for speed, 3 optimize for size & speed
codeoptions.nlp.bfgs_init = 3.0*np.identity(7) # initialization of the hessian
→˓approximation
codeoptions.noVariableElimination = 1.

# Creates code for symbolic model formulation given above, then contacts server to
→˓generate new solver
solver = model.generate_solver(codeoptions)
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11.9.3 Calling the generated solver

Once all parameters of the problem instance to be solved have been populated, the MEX
interface of the solver can be used to invoke it.

Matlab

Python

% Set initial guess to start solver from (here, middle of upper and lower bound)
x0i=[0.0,0.0,-1.5,1.5,1.,pi/4.,0.];
x0=repmat(x0i',model.N,1);
problem.x0=x0;

% Set initial condition
problem.xinit = [-2., 0., 0., deg2rad(90), 0.]';

% Set runtime parameters
params = [-1.5; 1.0]; # In this example, the user can change these parameters by
→˓clicking into an interactive window
problem.all_parameters = repmat(params,model.N,1);

% Time to solve the NLP!
[output,exitflag,info] = FORCESNLPsolver(problem);

% Make sure the solver has exited properly.
assert(exitflag == 1,'Some problem in FORCES solver');
fprintf('\nFORCES took %d iterations and %f seconds to solve the problem.\n',info.
→˓it,info.solvetime);

# Set initial guess to start solver from (here, middle of upper and lower bound)
x0i = np.array([0.,0.,-1.5,1.5,1.,np.pi/4.,0.])
x0 = np.transpose(np.tile(x0i, (1, model.N)))

# set initial condition
xinit = np.transpose(np.array([-2.,0.,0.,np.deg2rad(90),0.]))

problem = {"x0": x0,
"xinit": xinit,
"xfinal": xfinal}

# Set runtime parameters
params = np.array([-1.5,1.]) # In this example, the user can change these
→˓parameters by clicking into an interactive window
problem["all_parameters"] = np.transpose(np.tile(params,(1,model.N)))

# Time to solve the NLP!
output, exitflag, info = solver.solve(problem)

# Make sure the solver has exited properly.
assert exitflag == 1, "bad exitflag"
print("FORCES took {} iterations and {} seconds to solve the problem.".format(info.
→˓it, info.solvetime))

11.9.4 Results

The goal is to find a trajectory that steers the vehicle from point A as close as possible to point
B while avoiding obstacles. The trajectory should also be feasible with respect to the vehi-
cle dynamics and its safety and physical limitations. The calculated vehicle’s trajectory in 2D
space is presented in Figure 11.33. The progress of the other states and the inputs over time is
shown in Figure 11.34. One can see that all constraints are respected. To try out other obstacle
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positions you can run the example file on your own machine and click into the interactive
window.

You can find the code of this example in the examples folder that comes with your client.

Figure 11.33: The calculated trajectory of the car

11.9.5 Variation: External functions

In this variation, we want to supply the required functions through external functions in C. To
do so we have to provide the directory that contains said source files in the MATLAB code:

%% Define source file containing function evaluation code
model.extfuncs = 'C/myfevals.c';

We also need to include the two extern functions car_dyanmics and
car_dyanmics_jacobian, both contained in the car_dynamics.c file, through the
other_srcs options field:
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Figure 11.34: Development of the vehicle’s states and the system’s inputs over time
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% add additional source files required - separate by spaces if more than 1
codeoptions.nlp.other_srcs = 'C/car_dynamics.c';

In Python, we need to switch to an ExternalFunctionModel if we intend to use external call-
backs. We give the main callback evaluating the objective function, equality constraints and
inequality constraints, using the set_main_function() , and supply any additional files re-
quired by this callback using add_auxiliary().

model = forcespro.nlp.ExternalFunctionModel()

# Define source file containing function evaluation code
model.set_main_callback("C/myfevals.c", function="myfevals")
model.add_auxiliary("C/car_dynamics.c")
# One can also add a 'relative_to' argument specifiying the paths to be understood
# relative to this file's location. if not supplied, paths are relative to the
# current working directory in which this script is executed:
# model.set_main_callback('c/myfevals.c', function="myfevals" relative_to=os.path.
→˓dirname(__file__))
# model.add_auxiliary('c/car_dynamics.c', relative_to=os.path.dirname(__file__))

You can find the code of this example to try it out for yourself in the examples folder that
comes with your client.
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11.10 High-level interface: Indoor localization (MATLAB &
Python)

The indoor localization problem is to estimate the position of a target by measurements from
various anchors with known location. Outdoors, this well known as GPS, while indoors other
frequency bands (and less accurate clocks) are usually used. In this example, we show how to
generate code for a position estimator that relies on time-of-flight (TOF) measurements (GPS
uses time-difference-of-arrival, TDOA). The latter can be easily implemented with FORCE-
SPRO as well with only minor changes to the code below.

Figure 11.35: Indoor localization example GUI.

You can find the code of this example to try it out for yourself in the examples folder that
comes with your client.

Running the code will produce an interactive window like in Figure 11.35.
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11.10.1 Time of flight measurements

Given 𝑁 anchors with known positions (𝑥𝑎𝑖 , 𝑦
𝑎
𝑖 ), 𝑖 = 1, . . . , 𝑁 , the distance to the target with

unknown position (𝑥, 𝑦) is given by:

𝑑𝑖 = 𝑐𝑡𝑖 =
√︁

(𝑥− 𝑥𝑎𝑖 )2 + (𝑦 − 𝑦𝑎𝑖 )2

where 𝑡𝑖 is the time the signal from anchor 𝑖 travels at the speed 𝑐 = 299 792 458 m/s

11.10.2 Estimation error

Instead of the real distance, we work with squared distances to define the estimation error:

𝑒𝑖 = (𝑥− 𝑥𝑎𝑖 )2 + (𝑦 − 𝑦𝑎𝑖 )2 − 𝑑2𝑖

11.10.3 Minimize the error

The objective is a least-squares error function:

min
𝑥,𝑦

𝑁∑︁
𝑖=1

𝑒2𝑖

11.10.4 Implementation

The following Matlab/Python code generates C-code for implementing an optimizer for min-
imizing the least-squares error function from above. It takes the anchor positions and the
distance measurements, and returns the estimated position of the target.

Matlab

Python

%% This function generates the estimator
function generateEstimator(numberOfAnchors,xlimits,ylimits)
% Generates 2D decoding code for localization using FORCES NLP
% na: number of anchors

global na
na = numberOfAnchors;

%% NLP problem definition
% no need to change anything below
model.N = 1; % number of distance measurements
model.nvar = 2; % number of variables (use 3 if 3D)
model.npar = numberOfAnchors*3; % number of parameters: coordinates of anchors

→˓in 2D, plus measurements
model.objective = @objective;
model.lb = [xlimits(1) ylimits(1)]; % lower bounds on (x,y)
model.ub = [xlimits(2) ylimits(2)]; % upper bounds on (x,y)

%% codesettings
codesettings = getOptions('localizationDecoder');
codesettings.printlevel = 0; % set to 2 to see some prints
% codesettings.server = 'http://winner10:2470';
codesettings.maxit = 50; % maximum number of iterations

%% generate code

(continues on next page)
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(continued from previous page)

FORCES_NLP(model, codesettings);
end

%% This function implements the objective
% We assume that the parameter vector p is ordered as follows:
% p(1:na) - x-coordinates of the anchors
% p(na+(1:na)) - y-coordinates of the anchors
% p(2*na+(1:na)) - distance measurements of the anchors
function obj = objective( z,p )
global na
obj=0;
for i = 1:na

obj = obj + ( (p(i)-z(1))^2 + (p(i+na)-z(2))^2 - p(i+2*na)^2 )^2;
end

end

def generate_estimator(number_of_anchors, xlimits, ylimits):
"""
Generates and returns a FORCESPRO solver that esimates a position based on
noisy measurement inputs.
"""

# NLP problem definition
# ----------------------

model = forcespro.nlp.SymbolicModel(1) # number of distance measurements
model.nvar = 2 # number of variables (use 3 if 3D)
model.npar = number_of_anchors * 3 # number of parameters: coordinates of

→˓anchors in 2D, plus measurements
model.objective = objective # objective is defined as it's own function below
model.lb = np.array([xlimits[0], ylimits[0]]) # lower bounds on (x,y)
model.ub = np.array([xlimits[1], ylimits[1]]) # upper bounds on (x,y)

# FORCESPRO solver settings
# --------------------------

codesettings = forcespro.CodeOptions()
codesettings.printlevel = 0 # set to 2 to see some prints
codesettings.maxit = 50 # maximum number of iterations

# Generate a solver
# -----------------
solver = model.generate_solver(codesettings)

return solver

def objective(z, p):
"""
This function implements the objective to be minimized.

We assume that the parameter vector p is ordered as follows:

- p[0:(na-1)] - x-coordinates of the anchors
- p[na:(2*na-1)] - y-coordinates of the anchors
- p[(2*na):(3*na-1)] - distance measurements of the anchors

"""
obj = 0
for i in range(n):

obj += ((p[i] - z[0])**2 + (p[i + n] - z[1])**2 - p[i + 2*n]**2)**2
return obj

(continues on next page)
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(continued from previous page)

def distance(xa, xtrue, ya, ytrue):
return np.sqrt((xa - xtrue)**2 + (ya - ytrue)**2)
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11.11 High-level interface: Path tracking (MATLAB & Python)

In this example we illustrate the simplicity of the SQP_NLP API on a path-tracking problem.
In every simulation step, the predicted trajectory of the car is optimized to follow a set of path
points. The example furthermore visualises how the predicted trajectory changes while the
car moves forward.

In particular, we use a kinematic bicycle model described by a set of ordinary differential
equations (ODEs):

𝑥̇ = 𝑣 cos(𝜃 + 𝛽)

𝑦̇ = 𝑣 sin(𝜃 + 𝛽)

𝑣̇ =
𝐹

𝑚

𝜃 =
𝑣

𝑙𝑟
sin(𝛽)

𝛿̇ = 𝜑

with:

𝛽 = arctan(
𝑙𝑟

𝑙𝑟 + 𝑙𝑓
tan(𝛿))

The model consists of five differential states: 𝑥 and 𝑦 are the Cartesian coordinates of the car,
and 𝑣 is the linear velocity. The angles 𝜃 and 𝛿 denote the heading angle of the car and its
steering anlge. Next, there are two control inputs to the model: the acceleration force 𝐹 and
the steering rate 𝜑. The angle 𝛽 describes the direction of movement of the car’s center of
gravity relative to the heading angle 𝜃. The remaining three constant paramenters of the
system are the car mass 𝑚 = 1 kg, and the lengths 𝑙𝑟 = 0.5 m and 𝑙𝑓 = 0.5 m specifying the
distance from the car’s center of gravity to the rear wheels and the front wheels, respectively.

The trajectory of the vehicle will be defined as an NLP. First, we define stage variable 𝑧 by
stacking the input and differential state variables:

𝑧 = [𝐹, 𝜑, 𝑥, 𝑦, 𝑣, 𝜃, 𝛿]⊤

You can find the code of this example to try it out for yourself in the examples folder that
comes with your client.

11.11.1 Defining the MPC Problem

Objective

In this example the cost function is the same for all stages except for the last stage N. The
objective of this example is to follow a set of path points. At runtime, a target position 𝑝𝑖 for
each stage 𝑖 is provided. Each point consists of a x- and a y-coordinate:

𝑝𝑖 = [𝑝𝑖,𝑥, 𝑝𝑖,𝑦]⊤

The goal is to minimize the distance of the car to these target points. The distance is penalized
with quadratic costs. Plus, some small quadratic costs are added to the inputs 𝐹 and 𝑠, i.e.:

𝑓(𝑧, 𝑝𝑖) = 100(𝑧3 − 𝑝𝑖,𝑥)2 + 100(𝑧4 − 𝑝𝑖,𝑦)2 + 0.1𝑧21 + 0.01𝑧22

Since all cost terms are quadratic and summed up, we can formulate the objective as a least
squares problem:

𝑓(𝑧, 𝑝𝑖) =
1

2
||𝑟(𝑧, 𝑝𝑖)||22

𝑟(𝑧, 𝑝𝑖) = [
√

200(𝑧3 − 𝑝𝑖,𝑥),
√

200(𝑧4 − 𝑝𝑖,𝑦),
√

0.2𝑧1,
√

0.02𝑧2]⊤
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The stage cost function is coded in MATLAB and Python as the following function:

Matlab

Python

model.LSobjective = @LSobj;

function [r] = LSobj(z,currentTarget)
% z = [F,phi,xPos,yPos,v,theta,delta]
% currentTarget = point on path that is to be headed for

r = [sqrt(200.0)*(z(3)-currentTarget(1)); % costs for deviating from the path
→˓in x-direction

sqrt(200.0)*(z(4)-currentTarget(2)); % costs for deviating from the path
→˓in y-direction

sqrt(0.2)*z(1); % penalty on input F
sqrt(0.2)*z(2)]; % penalty on input phi

end

model = forcespro.nlp.SymbolicModel() # create empty model
model.objective = obj

def obj(z,current_target):
"""z = [F,phi,xPos,yPos,v,theta,delta]
current_target = point on path that is to be headed for
"""
return (100.0*(z[2]-current_target[0])**2 # costs on deviating on the path

→˓in x-direction
+ 100.0*(z[3]-current_target[1])**2 # costs on deviating on the path

→˓in y-direction
+ 0.1*z[0]**2 # penalty on input F
+ 0.1*z[1]**2) # penalty on input phi

Note that using the model.LSobjective option instead of model.objective allows you to
try out the gauss-newton method for the hessian approximation.

For the last stage, the terminal costs are slightly increased by adapting the weighting factors:

𝑓(𝑧, 𝑝𝑖) = 200(𝑧3 − 𝑝𝑖,𝑥)2 + 200(𝑧4 − 𝑝2𝑖,𝑦) + 0.2𝑧21 + 0.02𝑧22

The code looks a follows:

Matlab

Python

model.LSobjectiveN = @LSobjN;

function [r] = LSobjN(z,currentTarget)
% z = [F,phi,xPos,yPos,v,theta,delta]
% currentTarget = point on path that is to be headed for

r = [sqrt(400.0)*(z(3)-currentTarget(1)); % costs for deviating from the path
→˓in x-direction

sqrt(400.0)*(z(4)-currentTarget(2)); % costs for deviating from the path
→˓in y-direction

sqrt(0.4)*z(1); % penalty on input F
sqrt(0.4)*z(2)]; % penalty on input phi

end

model.objectiveN = objN

(continues on next page)
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def objN(z,current_target):
"""z = [F,phi,xPos,yPos,v,theta,delta]
current_target = point on path that is to be headed for
"""
return (200.0*(z[2]-current_target[0])**2 # costs on deviating on the path

→˓in x-direction
+ 200.0*(z[3]-current_target[1])**2 # costs on deviating on the path

→˓in y-direction
+ 0.2*z[0]**2 # penalty on input F
+ 0.2*z[1]**2) # penalty on input phi

Matrix equality constraints

The matrix equality constraints model.eq in this example result from the vehicle’s dynamics
given above. First, the continuous dynamic equations are implemented as follows:

Matlab

Python

function [xDot] = continuousDynamics(x,u)
% state x = [xPos,yPos,v,theta,delta], input u = [F, phi]

% set physical constants
l_r = 0.5; % distance rear wheels to center of gravity of the car
l_f = 0.5; % distance front wheels to center of gravity of the car
m = 1.0; % mass of the car

% set parameters
beta = atan(l_r/(l_f + l_r) * tan(x(5)));

% calculate dx/dt
xDot = [x(3) * cos(x(4) + beta); % dxPos/dt = v*cos(theta+beta)

x(3) * sin(x(4) + beta); % dyPos/dt = v*cos(theta+beta)
u(1)/m; % dv/dt = F/m
x(3)/l_r * sin(beta); % dtheta/dt = v/l_r*sin(beta)
u(2)]; % ddelta/dt = phi

end

def continuous_dynamics(x, u):
""" state x = [xPos,yPos,v,theta,delta], input u = [F,phi]"""

# set physical constants
l_r = 0.5 # distance rear wheels to center of gravitiy of the car
l_f = 0.5 # distance front wheels to center of gravitiy of the car
m = 1.0 # mass of the car

# set parameters
beta = casadi.arctan(l_r/(l_f + l_r) * casadi.tan(x[4]))

# calculate dx/dt
return np.array([x[2] * casadi.cos(x[3] + beta), # dxPos/dt = v*cos(theta+beta)

x[2] * casadi.sin(x[3] + beta), # dyPos/dt = v*sin(theta+beta)
u[0] / m, # dv/dt = F/m
x[2]/l_r * casadi.sin(beta), # dtheta/dt = v/l_r*sin(beta)
u[1]]) # ddelta/dt = phi

Now, these continuous dynamics are discretized using an explicit Runge-Kutta integrator of
order 4 as shown below. Note that the function RK4 is included in the FORCESPRO client
software.
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Matlab

Python

integrator_stepsize = 0.1;
% z(3:7) = states x, z(1:2) = inputs u
model.eq = @(z) RK4(z(3:7), z(1:2), @continuousDynamics, integrator_stepsize);

integrator_stepsize = 0.1
# z[2:7] = states x, z[0:2] = inputs u
model.eq = lambda z: forcespro.nlp.integrate(continuous_dynamics, z[2:7], z[0:2],

integrator=forcespro.nlp.integrators.
→˓RK4,

stepsize=integrator_stepsize)

As a last step, the indices of the left hand side of the dynamical constraint are defined. For
efficiency reasons, make sure the matrix has structure [0 I].

Matlab

Python

model.E = [zeros(5,2), eye(5)];

model.E = np.concatenate([np.zeros((5,2)), np.eye(5)], axis=1)

Bounds

All variables except the heading angle 𝜃 are bounded:

−5 N ≤𝐹 ≤ 5 N

−90 deg/s ≤𝜑 ≤ 90 deg/s

−2 m ≤𝑥 ≤ 2 m

−2 m ≤𝑦 ≤ 2 m

0 m/s ≤𝑣 ≤ 4 m/s

− inf ≤𝜃 ≤ inf

−0.48𝜋 rad ≤𝛿 ≤ 0.48𝜋 rad

The implementation of the simple bounds is given here:

Matlab

Python

% upper/lower variable bounds lb <= z <= ub
% inputs | states
% F phi x y v theta delta
model.lb = [ -5., deg2rad(-90), -2., -2., 0., -inf, -0.48*pi];
model.ub = [ +5., deg2rad(90), 2., 2., 4., +inf, 0.48*pi];

# upper/lower variable bounds lb <= z <= ub
# inputs | states
# F phi x y v theta delta
model.lb = np.array([-5., np.deg2rad(-90.), -2., -2., 0., -np.inf, -0.48*np.
→˓pi])
model.ub = np.array([+5., np.deg2rad(+90.), 2., 2., 4., np.inf, 0.48*np.
→˓pi])
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Dimensions

Furthermore, the number of variables, constraints and real-time parameters explained above
needs to be provided as well as the length of the multistage problem. For this example, we
chose to use 𝑁 = 10 stages in the NLP:

Matlab

Python

model.N = 10; % horizon length
model.nvar = 7; % number of variables
model.neq = 5; % number of equality constraints
model.npar = 2; % number of runtime parameters

model.N = 10 # horizon length
model.nvar = 7 # number of variables
model.neq = 5 # number of equality constraints
model.npar = 2 # number of runtime parameters

Initial conditions

The goal of the maneuver is to steer the vehicle from a set of initial conditions:

𝑥init = 0.8 m, 𝑦init = 0 m, 𝑣init = 0 m/s, 𝜃init = 0.5𝜋 rad, , 𝛿init = 0 rad

For the code generation, only the indices of the variables to which initial values will be applied
are required. This is coded as follows:

Matlab

Python

model.xinitidx = 3:7;

model.xinitidx = range(2,7)

11.11.2 Generating a solver

We have now populated model with the necessary fields to generate a solver for our problem.
We choose the SQP solve method and set some further options for our solver. Then, we use
the function FORCES_NLP to generate a solver for the problem defined by model:

Matlab

Python

%% Set solver options
codeoptions = getOptions('FORCESNLPsolver');
codeoptions.maxit = 200; % Maximum number of iterations
codeoptions.printlevel = 2; % Use printlevel = 2 to print
→˓progress (but(not for timings)
codeoptions.optlevel = 0; % 0: no optimization, 1: optimize
→˓for size, 2: optimize for speed, 3: optimize for size & speed
codeoptions.cleanup = false;
codeoptions.timing = 1;
codeoptions.printlevel = 0;
codeoptions.nlp.hessian_approximation = 'bfgs'; % set initialization of the
→˓hessian approximation

(continues on next page)
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codeoptions.solvemethod = 'SQP_NLP'; % choose the solver method
→˓Sequential Quadratic Programming
codeoptions.maxqps = 5; % maximum number of quadratic
→˓problems to be solved during one solver call
codeoptions.sqp_nlp.reg_hessian = 5e-9; % increase this parameter if
→˓exitflag=-8

# Set solver options
codeoptions = forcespro.CodeOptions('FORCESNLPsolver')
codeoptions.maxit = 200 # Maximum number of iterations
codeoptions.printlevel = 0
codeoptions.optlevel = 0 # 0 no optimization, 1 optimize
→˓for size, 2 optimize for speed, 3 optimize for size & speed
codeoptions.cleanup = False
codeoptions.timing = 1
codeoptions.nlp.hessian_approximation = 'bfgs' # when using solvemethod = 'SQP_NLP
→˓' and LSobjective, try out 'gauss-newton' here
codeoptions.solvemethod = 'SQP_NLP' # choose the solver method
→˓Sequential Quadratic Programming
codeoptions.nlp.bfgs_init = 2.5*np.identity(7) # set initialization of the
→˓hessian approximation
codeoptions.sqp_nlp.maxqps = 1 # maximum number of quadratic
→˓problems to be solved
codeoptions.sqp_nlp.reg_hessian = 5e-9 # increase this if exitflag=-8

# Creates code for symbolic model formulation given above, then contacts
# server to generate new solver
solver = model.generate_solver(options=codeoptions)

11.11.3 Calling the generated solver

The goal of this example is to optimize the predicted car trajectory for the next N time steps
and then apply the calculated input for the current time step. The procedure is repeated for
the entire simulation period.

This means, after setting up the initial problem instance, the solver is called in a loop for every
simulation time step. The MEX interface of the solver is used to invoke it.

Matlab

Python

%% Simulation
simLength = 80; % simulate 8sec

% Variables for storing simulation data
x = zeros(5,simLength+1); % states
u = zeros(2,simLength); % inputs

% Set initial guess to start solver from
x0i = zeros(model.nvar,1);
problem.x0 = repmat(x0i,model.N,1);

% Set initial condition
xinit = [0.8, 0., 0., deg2rad(90), 0.]';
x(:,1) = xinit;

for k = 1:simLength

(continues on next page)
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% Set initial condition
problem.xinit = x(:,k);

% Set runtime parameters (here, the next N points on the path)
nextPathPoints = extractNextPathPoints(pathPoints, x(1:2,k), model.N);
problem.all_parameters = reshape(nextPathPoints,2*model.N,1);

% Solve optimization problem
[output,exitflag,info] = FORCESNLPsolver(problem);

% Make sure the solver has exited properly
if( exitflag == 1 )

fprintf('\nFORCES took %d iterations and ',info.it);
fprintf('%f seconds to solve the problem.\n',info.solvetime);

else
error('Some problem in solver');

end

% Apply optimized input u to system and save simulation data
u(:,k) = output.x01(1:2);
x(:,k+1) = model.eq( [u(:,k);x(:,k)] )';

end

# Simulation
# ----------
sim_length = 80 # simulate 8sec

# Variables for storing simulation data
x = np.zeros((5,sim_length+1)) # states
u = np.zeros((2,sim_length)) # inputs

# Set initial guess to start solver from
x0i = np.zeros((model.nvar,1))
x0 = np.transpose(np.tile(x0i, (1, model.N)))

# Set initial condition
xinit = np.transpose(np.array([0.8, 0., 0., np.deg2rad(90), 0.]))
x[:,0] = xinit

problem = {"x0": x0,
"xinit": xinit}

for k in range(sim_length):

# Set initial condition
problem["xinit"] = x[:,k]

# Set runtime parameters (here, the next N points on the path)
next_path_points = extract_next_path_points(path_points, x[0:2,k], model.N)
problem["all_parameters"] = np.reshape(np.transpose(next_path_points), \

(2*model.N,1))

# Time to solve the NLP!
output, exitflag, info = solver.solve(problem)

# Make sure the solver has exited properly.
assert exitflag == 1, "bad exitflag"
sys.stderr.write("FORCES took {} iterations and {} seconds to solve the

→˓problem.\n"\
.format(info.it, info.solvetime))

(continues on next page)
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# Extract output
temp = np.zeros((np.max(model.nvar), model.N))
for i in range(0, model.N):

temp[:, i] = output['x{0:02d}'.format(i+1)]
pred_u = temp[0:2, :] # predicted inputs
pred_x = temp[2:7, :] # oredicted states

# Apply optimized input u of first stage to system and save simulation data
u[:,k] = pred_u[:,0]
x[:,k+1] = np.transpose(model.eq(np.concatenate((u[:,k],x[:,k]))))

11.11.4 Results

The goal is to find a trajectory that steers the vehicle as close to the provided path points as
possible. The trajectory should also be feasible with respect to the vehicle dynamics and its
safety and physical limitations. The 2D calculated vehicle’s trajectory at timestep 𝑘 = 40 is
presented in blue in Figure 11.36. Here, you can see the current predictions for the trajectory
marked green. The progress of the other states and inputs over time as well as their predic-
tions is shown in Figure 11.37.

The trajectory and the progress of the system variables over the entire simulation period are
presented in Figure 11.38 and Figure 11.39. One can see that all constraints are respected.

To see how the predictions of the system variables develop over all timesteps you can run the
example file on your own machine.

You can find the code of this example in the examples folder that comes with your client.
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Figure 11.36: The calculated trajectory of the car (blue) and its predictions (green) at timestep
𝑘 = 40
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Figure 11.37: Development of the vehicle’s states and the system’s inputs over time (timestep
𝑘 = 40)
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Figure 11.38: The calculated trajectory of the car
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Figure 11.39: Development of the vehicle’s states and the system’s inputs over time
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11.12 High-level interface: Rate Constraints

As in Section High-level interface: Basic example we consider the following linear MPC prob-
lem with lower and upper bounds on state and inputs, and a terminal cost term:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

(︀
𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

)︀
subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ 𝑥̄

𝑢 ≤ 𝑢𝑖 ≤ 𝑢̄

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to the
system after a solution has been obtained. For the sake of this example, we assume 𝑢𝑖 ∈ R
and 𝑥𝑖 ∈ R2 and write

𝐴 =

(︂
𝐴11 𝐴12

𝐴21 𝐴22

)︂
, 𝐵 =

(︂
𝐵1

𝐵2

)︂
.

In addition, we impose constraints on the input rate change ∆𝑢𝑖 = 𝑢𝑖+1 − 𝑢𝑖:

∆𝑢 ≤ ∆𝑢𝑖 ≤ ∆𝑢.

The constraints can be included by defining states

𝑧𝑖 =

⎛⎝∆𝑢𝑖
𝑢𝑖
𝑥𝑖

⎞⎠ ∈ R4.

The MPC problem now reads

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

(︀
𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

)︀
,

subject to 𝑥0 = 𝑥,

𝐸𝑧𝑖+1 = 𝐴𝑧𝑖,

𝑧 ≤ 𝑧𝑖 ≤ 𝑧.

with

𝐸 =

⎛⎝0 1 0 0
0 0 1 0
0 0 0 1

⎞⎠ , 𝐴 =

⎛⎝1 1 0 0
0 𝐵1 𝐴11 𝐴12

0 𝐵2 𝐴21 𝐴22

⎞⎠ ,

𝑧 = (∆𝑢, 𝑢, 𝑥)⊤, 𝑧 = (∆𝑢, 𝑢, 𝑥)⊤.

11.12.1 Implementation in MATLAB

The Matlab code is based on the Matlab code in High-level interface: Basic example. We
define a variable absrate which limits the absolute value of ∆𝑢.

Matlab

Python

%% system
A = [1.1 1; 0 1];
B = [1; 0.5];

(continues on next page)
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[nx,nu] = size(B);

%% MPC setup
N = 10;
Q = eye(nx);
R = eye(nu);
if( exist('dlqr','file') )
[~,P] = dlqr(A,B,Q,R);
else
P = 10*Q;
end

absrate = 0.5;
umin = -0.5; umax = 0.5;
dumin = -absrate; dumax = absrate;
xmin = [-5, -5]; xmax = [5, 5];

%% FORCESPRO multistage form
% assume variable ordering zi = [u{i+1}-u{i}; u{i}; x{i}] for i=1...N

% dimensions
model.N = 11; % horizon length
model.nvar = nu+nu+nx; % number of variables
model.neq = nu+nx; % number of equality constraints

% objective
model.objective = @(z) z(2)*R*z(2) + [z(3);z(4)]'*Q*[z(3);z(4)];
model.objectiveN = @(z) z(2)*R*z(2) + [z(3);z(4)]'*P*[z(3);z(4)];

% equalities
model.eq = @(z) [ z(1) + z(2);

A(1,:)*[z(3);z(4)] + B(1)*z(2);
A(2,:)*[z(3);z(4)] + B(2)*z(2)];

model.E = [zeros(3,1), eye(3)];

% initial state
model.xinitidx = 3:4;

% inequalities
model.lb = [ dumin, umin, xmin ];
model.ub = [ dumax, umax, xmax ];

# system
A = np.array([[1.1, 1], [0, 1]])
B = np.array([[1], [0.5]])
nx, nu = np.shape(B)

# MPC setup
N = 10
Q = np.eye(nx)
R = np.eye(nu)
P = 10*Q
umin = -0.5
umax = 0.5
absrate = 0.05
dumin = -absrate
dumax = absrate
xmin = np.array([-5, -5])
xmax = np.array([5, 5])

(continues on next page)
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# FORCESPRO multistage form
# assume variable ordering zi = [u{i+1}-ui; ui; xi] for i=1...N

# dimensions
model = forcespro.nlp.ConvexSymbolicModel(11) # horizon length
model.nvar = 4 # number of variables
model.neq = 3 # number of equality constraints

# objective
model.objective = (lambda z: z[1]*R*z[1] +

casadi.horzcat(z[2], z[3]) @ Q @ casadi.vertcat(z[2], z[3]))
model.objectiveN = (lambda z: z[0]*R*z[0] +

casadi.horzcat(z[2], z[3]) @ P @ casadi.vertcat(z[2], z[3]))

# equalities
model.eq = lambda z: casadi.vertcat( z[0] + z[1],

casadi.dot(A[0, :], casadi.vertcat(z[2], z[3])) +
→˓B[0, :]*z[1],

casadi.dot(A[1, :], casadi.vertcat(z[2], z[3])) +
→˓B[1, :]*z[1])

model.E = np.concatenate([np.zeros((3, 1)), np.eye(3)], axis=1)

# initial state
model.xinitidx = [2, 3]

# inequalities
model.lb = np.concatenate([[dumin, umin], xmin])
model.ub = np.concatenate([[dumax, umax], xmax])

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.12.2 Results

We run the simulation for different values of absrate. The results of the simulation are pre-
sented below. The plot on the top shows the system’s states over time, the plot in the middle
shows the input commands, the plot on the bottom shows the input rate change. We can see
that all constraints are respected. We observe that compared to High-level interface: Basic
example the behaviour does not change for absrate >= 0.1 (see Figure 11.40). If absrate =
0.05, it takes more time to steer the state to its setpoint (see Figure 11.41).
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Figure 11.40: Simulation results of the states (top, in blue and red), input (middle, in blue), and
input rate change (bottom, in blue) over time. The constraints are plotted in red dashed lines.
The rate constraint is set to 0.5 and is not active at any moment.

Chapter 11. Examples 197



FORCESPRO User Manual

Figure 11.41: Simulation results of the states (top, in blue and red), input (middle, in blue), and
input rate change (bottom, in blue) over time. The constraints are plotted in red dashed lines.
The rate constraint is set to 0.05 and is active at some points.
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11.13 High-level interface: Soft Constraints

As in Section High-level interface: Basic example we consider the following linear MPC prob-
lem with lower and upper bounds on state and inputs, and a terminal cost term:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

(︀
𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

)︀
subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ 𝑥̄

𝑢 ≤ 𝑢𝑖 ≤ 𝑢̄

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to the
system after a solution has been obtained. For the sake of this example, we assume 𝑢𝑖 ∈ R
and 𝑥𝑖 ∈ R2 and write

𝐴 =

(︂
𝐴11 𝐴12

𝐴21 𝐴22

)︂
, 𝐵 =

(︂
𝐵1

𝐵2

)︂
.

Suppose we want to allow the inequality constraints for 𝑢𝑖 to be slightly violated. In this case,
we introduce a slack variable 𝑠𝑖 ≥ 0 and write

𝑢− 𝑠𝑖 ≤ 𝑢𝑖 ≤ 𝑢+ 𝑠𝑖.

We want to punish positive values of 𝑠𝑖 by adding a penalty term to the objective function.
We use a hyperparameter 𝜆 ≥ 0 and write

𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

(︀
𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖 + 𝜆𝑠𝑖

)︀
.

Here, we use a penalty term linear in 𝑠𝑖. For 𝜆 large enough, the slack variables 𝑠𝑖 are only
chosen positive if the problem is infeasible with a hard constraint. For small 𝜆, it may be op-
timal to slightly violate the constraints even though the original problem is feasible. It is also
common to choose a penalty term quadratic in 𝑠𝑖. In order to use the FORCESPRO framework,
we need to recast the new inequality constraints:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

(︀
𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖 + 𝜆𝑠𝑖

)︀
,

subject to 𝑥0 = 𝑥,

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖,

𝑥 ≤ 𝑥𝑖 ≤ 𝑥̄,

ℎ1(𝑢𝑖, 𝑠𝑖) ≤ 𝑢̄,

𝑢 ≤ ℎ2(𝑢𝑖, 𝑠𝑖),

with ℎ1(𝑢𝑖, 𝑠𝑖) = 𝑢𝑖 − 𝑠𝑖 and ℎ2(𝑢𝑖, 𝑠𝑖) = 𝑢𝑖 + 𝑠𝑖.

11.13.1 Implementation in MATLAB

The Matlab code is based on the Matlab code in High-level interface: Basic example. The
modified inequality constraints can be implemented as follows:

Matlab

Python
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%% relaxed inequality constraints
% assume variable ordering zi = [si, ui, xi]

model.nh = 2; % number of inequality constraints
model.ineq = @(z) [ z(2) - z(1); % h_1

z(2) + z(1)]; % h_2
model.hu = [umax, +inf]; % upper bound on inequality constraints
model.hl = [-inf, umin]; % lower bound on inequality constraints

# relaxed inequalities constraints
# assume variable ordering zi = [si, ui, xi]

model.ineq = lambda z: casadi.vertcat( z[1] - z[0],
z[1] + z[0])

model.hu = np.array([umax, +float('inf')])
model.hl = np.array([-float('inf'), umin])

The resulting code is depicted below.

Matlab

Python

%% system
A = [1.1 1; 0 1];
B = [1; 0.5];
[nx,nu] = size(B);
lambda = 8; % measure for penalty term

%% MPC setup
N = 10;
Q = eye(nx);
R = eye(nu);
if( exist('dlqr','file') )

[~,P] = dlqr(A,B,Q,R);
else

P = 10*Q;
end
umin = -0.5; umax = 0.5;
xmin = [-5, -5]; xmax = [5, 5];

%% FORCESPRO multistage form
% assume variable ordering zi = [si; ui; xi] for i=1...N

% dimensions
model.N = 11; % horizon length
model.nvar = 4; % number of variables
model.neq = 2; % number of equality constraints
model.nh = 2; % number of inequality constraints

% objective with penalty term
model.objective = @(z) z(2)*R*z(2) + [z(3);z(4)]'*Q*[z(3);z(4)] + lambda*z(1);
model.objectiveN = @(z) z(2)*R*z(2) + [z(3);z(4)]'*P*[z(3);z(4)] + lambda*z(1);

% equalities
model.eq = @(z) [ A(1,:)*[z(3);z(4)] + B(1)*z(2);

A(2,:)*[z(3);z(4)] + B(2)*z(2)];

model.E = [zeros(2,2), eye(2)];

% initial state
model.xinitidx = 3:4;

(continues on next page)
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% relaxed inequalities
model.ineq = @(z) [ z(2) - z(1);

z(2) + z(1)];
model.hu = [umax, +inf];
model.hl = [-inf, umin];

model.lb = [0, -inf, xmin ];
model.ub = [+inf, +inf, xmax ];

# system
A = np.array([[1.1, 1], [0, 1]])
B = np.array([[1], [0.5]])
nx, nu = np.shape(B)
lam = 8 # measure for penalty term

# MPC setup
N = 10
Q = np.eye(nx)
R = np.eye(nu)
P = 10*Q
umin = -0.5
umax = 0.5
xmin = np.array([-5, -5])
xmax = np.array([5, 5])

# FORCESPRO multistage form
# assume variable ordering zi = [si; ui; xi] for i=1...N

# dimensions
model = forcespro.nlp.SymbolicModel(11) # horizon length
model.nvar = 4 # number of variables
model.neq = 2 # number of equality constraints
model.nh = 2

# objective with penalty term
model.objective = (lambda z: z[1]*R*z[1] + lam*z[0] +

casadi.horzcat(z[2], z[3]) @ Q @ casadi.vertcat(z[2], z[3]))
model.objectiveN = (lambda z: z[1]*R*z[1] + lam*z[0] *

casadi.horzcat(z[2], z[3]) @ P @ casadi.vertcat(z[2], z[3]))

# equalities
model.eq = lambda z: casadi.vertcat(casadi.dot(A[0, :], casadi.vertcat(z[2],
→˓z[3])) + B[0, :]*z[1],

casadi.dot(A[1, :], casadi.vertcat(z[2], z[3])) +
→˓B[1, :]*z[1])

model.E = np.concatenate([np.zeros((2, 2)), np.eye(2)], axis=1)

# initial state
model.xinitidx = [2, 3]

# relaxed inequalities
model.ineq = lambda z: casadi.vertcat( z[1] - z[0],

z[1] + z[0])
model.hu = np.array([umax, +float('inf')])
model.hl = np.array([-float('inf'), umin])

# inequalities
model.lb = np.concatenate([[0, -float('inf')], xmin])

(continues on next page)
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model.ub = np.concatenate([[float('inf'), float('inf')], xmax])

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.13.2 Results

We run the simulation for 𝜆 = 2, 8. The results of the simulation are presented in Figure 11.42
below. The plot on the top shows the system’s states over time, the plot on the bottom shows
the input commands. For 𝜆 = 2, the constraints on 𝑢 are clearly violated, for 𝜆 = 8, these
constraints are only slightly violated.

Figure 11.42: Simulation results of the states (top), input (middle) over time. The constraints
are plotted in black dashed lines.
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11.14 Controlling a crane using a FORCESPRO NLP solver

In this example we will see how to control a crane using the FORCESPRO interior point NLP
solver. One interesting feature of this system is that is has a rather large linear subsystem
which FORCESPRO can exploit for performance (see Linear subsystem exploitation). The
crane is described by the following states:

𝑥𝐶 : cart position
𝑣𝐶 : cart velocity
𝑥𝐿 : cable length
𝑣𝐿 : rate of change of cable length
𝜃 : angle of pendulum
𝜔 : rate of change of angle

𝑢𝐶 : voltage for horizontal actuator
𝑢𝐿 : voltage for rotating actuator

and the control inputs are given by the voltage rate for the horizontal actuator 𝑢𝐶𝑅 and the
voltage rate of the rotating actuator 𝑢𝐿𝑅. The system dynamics are described by the following
ODE:

𝑥̇𝐶 = 𝑣𝐶

𝑣̇𝐶 = 𝑎𝐶

𝑥̇𝐿 = 𝑣𝐿

𝑣̇𝐿 = 𝑎𝐿

𝜃 = 𝜔

𝜔̇ = −𝑎𝐶 cos(𝜃) + 𝑔 sin(𝜃) + 2𝑣𝐿𝜔

𝑥𝐿
𝑢̇𝐶 = 𝑢𝐶𝑅

𝑢̇𝐿 = 𝑢𝐿𝑅

where 𝑎𝐶 = −𝑣𝐶
𝜏 + 𝐴𝐶𝑢𝐶

𝜏 and 𝑎𝐿 = −𝑣𝐿
𝜏 + 𝐴𝐿𝑢𝐿

𝜏 and the constants are given by

𝑔 = 9.81 (gravitational constant)
𝐴𝐶 = 0.0474 (gain of GC(s) in m/s/V)
𝐴𝐿 = 0.0341 (gain of GL(s) m/s/V)
𝜏 = 0.0247 (time constant of winch dynamics in seconds)

For further details on these models we refer to [VukLoock] and [QuirDiehl].

You can find the Matlab code below for this example to try it out for yourself in the examples
folder that comes with your client.

11.14.1 Defining the MPC problem

Model dimensions and dynamics

The following code-snippet shows how to define the MPC problem associated with control-
ling the crane in FORCESPRO. The primal variable of our optimization problem is

𝑧 =

(︂
𝑢
𝑥

)︂
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%% Define crane model
% Dimensions
model.N = 20; % horizon length
model.nvar = 10; % number of variables
model.neq = 8; % number of equality constraints
model.nh = 0; % number of inequality constraint functions
model.npar = 2; % number of parameters (these will be the reference values
→˓to track)
nx = 8;
nu = 2;

% Dynamics
model.E = [zeros(nx,nu), eye(nx)];
model.continuous_dynamics = @(x,u,p) ode(x,u,p);

Here the right-hand-side of the differential equation ode is defined by the following Matlab
function

function dx = ode(x,u,p)

g = 9.81; % gravitational constant
AC = 0.0474; % gain of GC(s) in m/s/V
AL = 0.0341; % gain of GL(s) m/s/V
tau = 0.0247; % time constant of winch dynamics in seconds

uCR = u(1); % voltage rate for horizontal actuator
uLR = u(2); % voltage rate for rotating actuator

xC = x(1); % cart position
vC = x(2); % cart velocity
xL = x(3); % cable length
vL = x(4); % rate of change of cable length
theta = x(5); % angle of pendulum
omega = x(6); % rate of change of angle
uC = x(7); % voltage for horizontal actuator
uL = x(8); % voltage for rotating actuator

aT = -(1/tau)*vC + (AC/tau)*uC;
aL = -(1/tau)*vL + (AL/tau)*uL;

dx = [ vC; ...
aT; ...
vL; ...
aL; ...
omega; ...
-(1/xL)*(aT*cos(theta) + g*sin(theta) + 2*vL*omega); ...
uCR; ...
uLR ];

end

System constraints

We put simple constraints on both of the control inputs as well as the voltage for horizontal
actuator and the voltage for rotating actuator. We also specify that we have an initial condi-
tion for all the states.

% Bounds
model.lb = [ -100, -100, -inf, -inf, -inf, -inf, -inf, -inf, -10, -10 ];
model.ub = [ +100, +100, +inf, +inf, +inf, +inf, +inf, +inf, +10, +10 ];

(continues on next page)
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% Initial state
xinitidx = 3:10;
model.xinitidx = xinitidx;

Objective function

The goal of the control will be to track reference values for the cart position and cable length
of the crane. Hence, it makes sense to use a Gauss-Newton hessian approaximation in our
optimization problem. Hence, in FORCESPRO we specify a least squares objective function

% Least squares objective function
model.LSobjective = @(z, p) LScost(z, p);

where the LScost function is defined as follows

function [ r ] = LScost(z,p)
ep = 1e-5;
cst = 50;
sep = sqrt(ep);
scst = sqrt(cst);
r = [ sep*z(1); sep*z(2); scst*(z(3)-p(1)); sep*z(4); scst*(z(5)-p(2)); sep*z(6);
→˓sep*z(7); sep*z(8); sep*z(9); sep*z(10)];
end

11.14.2 Generating a FORCESPRO interior point NLP solver

In order to generate a solver we first need to choose options to specify the algorithmic spec-
ifications (see Solver Options) we want implemented in our solver. The two most important
options to mention here is that we specify to use a Gauss-Newton hessian approximation and
we want to allow FORCESPRO to exploit linear subsystems of our dynamics.

%% Set codeoptions to specify solver settings
codeoptions = getOptions('CraneSolver');
Ts = 1/100; % sampling time
codeoptions.nlp.integrator.Ts = Ts;
nodes = 4;
codeoptions.nlp.integrator.nodes = nodes;
codeoptions.nlp.integrator.type = 'ERK4';
codeoptions.nlp.integrator.attempt_subsystem_exploitation = 1; % Enable subsystem
→˓exploitation for performance
codeoptions.printlevel = 0;
codeoptions.nlp.hessian_approximation = 'gauss-newton';
codeoptions.server = 'https://forces.embotech.com/';

% Generate solver
FORCES_NLP(model, codeoptions);

The last command will generate a FORCESPRO solver which can now be called from Matlab
via the name CraneSolver.

11.14.3 Calling the crane solver

With our FORCESPRO controller at hand we can easily simulate our system in Matlab as the
following code-snippet shows.
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%% Simulation
totalTime = 100; % number of seconds
nSamples = totalTime / Ts;

x = [ 0.15; 0; 0.7; 0; 0; 0; 0; 0];
for ii = 1:nSamples

% get current reference
ref = getRef(t, totalTime);

% set up problem data
problem.xinit = x;
problem.x0 = repmat([0;0;x],model.N,1);
problem.all_parameters = repmat(ref,model.N,1);

% call FORCESPRO solver and check exit status
[solution, exitflag, info] = CraneSolver(problem);
if exitflag ~= 1

error('Encountered solver failure.');
end

% extract control and update state
u = solution.x01(1:2);
x = RK4( x, u, @(x,u,p) ode(x,u,p), Ts, ref, nodes);

end

11.14.4 Results

As can be seen from figures Figure 11.43 and Figure 11.44 below the FORCESPRO con-
troller achieves tracking the reference values almost perfectly. A benchmark running the
CraneSolver with and without linear subsystem exploitation on a Raspberry Pi 3 showed an
overall reduction of computation time by 22% when exploiting linear subsystems.

Figure 11.43: The reference values for the cart position (𝑥𝐶 ) seen in red and the simulated cart
position seen in blue.
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Figure 11.44: The reference values for the cable length (𝑥𝐿) seen in red and the simulated cable
length seen in blue.

11.15 Real-time SQP Solver: Robotic Arm Manipulator (MAT-
LAB & Python)

In this example we illustrate the use of the real-time Sequential Quadratic Programming
(SQP) solver. In particular, we use a robotic arm manipulator described by a set of ordinary
differential equations (ODEs):

𝜃1 = 𝛾

𝜃2 =
1

𝛽2
(𝜏2 − 𝛽1𝛾 − 𝛽3𝜃

2
1 − 𝛽4)

𝜏1 = 𝑢1

𝜏2 = 𝑢2

where 𝜃1, 𝜃2 are joint angles modelling the manipulator configuration, 𝑢1, 𝑢2 are the rates (in-
puts) of the torques 𝜏1, 𝜏2 applied to the joints and

𝛾 =̂
1

𝛼1 − 𝛼2
𝛽1

𝛽2

(
𝛼2

𝛽2
(𝛽4 + 𝛽3𝜃

2
1 − 𝜏2) − 𝛼3𝜃1𝜃2 − 𝛼4𝜃2 − 𝛼5 + 𝜏1).

The coefficients 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 and 𝛽1, 𝛽2, 𝛽3, 𝛽4 depend on the inertia and mass of the robot
arm components. Their expressions can be found in [SicSci09]. The optimal control problem
is formalized from the state 𝑥 defined by

𝑥 =̂ (𝜃1, 𝜃1, 𝜃2, 𝜃2, 𝜏1, 𝜏2)⊤

and the input 𝑢 defined as

𝑢 =̂ (𝜏1, 𝜏2)⊤.

The control objective is to make the first joint angle 𝜃1 follow a reference of 1.2 rad from 0 to
10 s and −1.2 rad from 10 to 20 s. Similarly, the second joint angle 𝜃2 should follow a reference
of −1.2 rad from 0 to 10 s and 1.2 rad from 10 to 20 s. The stage variable 𝑧 is defined by stacking
the input and differential state variables:

𝑧 = (𝜏1, 𝜏2, 𝜃1, 𝜃1, 𝜃2, 𝜃2, 𝜏1, 𝜏2)⊤
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You can find the code of this example to try it out for yourself in the examples folder that
comes with your client.

11.15.1 Defining the MPC problem

Tracking objective

Our goal is to minimize the distance of the joint angles to the reference, which can be trans-
lated in the following stage cost function:

𝑓(𝑧, 𝑝) = 1000(𝑧3 − 1.2𝑝)2 + 0.1𝑧24 + 1000(𝑧5 + 1.2𝑝)2 + 0.1𝑧26 + 0.01𝑧27 + 0.01𝑧28 + 0.01𝑧21 + 0.01𝑧22 ,

where 𝑝 is a run-time parameter taking value 1 from 0 to 10 s and −1 from 10 to 20 s.

The stage cost function is coded in MATLAB as the least-squares vector:

Matlab

Python

model.LSobjective = @(z,p)[sqrt(1000) * (z(3)-p(1)*1.2);...
sqrt(0.1) * z(4);...
sqrt(1000) * (z(5)+p(1)*1.2);...
sqrt(0.1) * z(6);...
sqrt(0.01) * z(7);...
sqrt(0.01) * z(8);...
sqrt(0.01) * z(1);...
sqrt(0.01) * z(2)];

model.objective = lambda z, p: ( 1000 * (z[2] - p[0]*1.2)**2
+ 0.1 * z[3]**2
+ 1000 * (z[4] + p[0]*1.2)**2
+ 0.10 * z[5]**2
+ 0.01 * z[6]**2
+ 0.01 * z[7]**2
+ 0.01 * z[0]**2
+ 0.01 * z[1]**2)

In the MATLAB example, this is needed to compute a Gauss-Newton approximation from the
Jacobian of the least-squares vector. In the Python example, where Gauss-Newton approxi-
mations are not yet available, we use the objective field to supply the target function.

State and input constraints

The following constraints are imposed on the torques and torque rates:

−100 Nm ≤𝜏1 ≤ 70 Nm

−100 Nm ≤𝜏2 ≤ 70 Nm

−200 Nm/s ≤𝜏1 ≤ 200 Nm/s

−200 Nm/s ≤𝜏2 ≤ 200 Nm/s

This corresponds to the code below.

Matlab

Python
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% upper/lower variable bounds lb <= x <= ub
model.lb = [ -200, -200, -pi, -100, -pi, -100, -100, -100 ];
model.ub = [ 200, 200, pi, 100, pi, 100, 70, 70 ];

# Upper/lower variable bounds lb <= x <= ub
# Inputs | States
# dtau1 dtau2 theta1 dtheta1 theta2 dtheta2 tau1 tau2
model.lb = np.array([ -200, -200, -np.pi, -100, -np.pi, -100, -100, -100])
model.ub = np.array([ 200, 200, np.pi, 100, np.pi, 100, 70, 70])

Initial condition and horizon length

The prediction horizon is set to 21 and the following initial condition is set

Matlab

Python

model.xinit = [-0.4 0 0.4 0 0 0 ]';
model.xinitidx = 3:8;

xinit = np.array([-0.4, 0, 0.4, 0, 0, 0])
model.xinitidx = range(2, 8)

11.15.2 Generating a real-time SQP solver

We have now populated model with the necessary fields to generate an SQP solver, which
requires settings a few options, as follows:

Matlab

Python

%% Define solver options
codeoptions = getOptions('RobotArmSolver');
codeoptions.maxit = 200; % Maximum number of
→˓iterations of inner QP solver
codeoptions.printlevel = 0; % Use printlevel = 2
→˓to print progress (but not for timing)
codeoptions.optlevel = 3;
% Explicit Runge-Kutta 4 integrator
codeoptions.nlp.integrator.Ts = integrator_stepsize;
codeoptions.nlp.integrator.nodes = 5;
codeoptions.nlp.integrator.type = 'ERK4';
% Options for SQP solver
codeoptions.solvemethod = 'SQP_NLP'; % SQP algorithm
codeoptions.nlp.hessian_approximation = 'gauss-newton'; % Gauss-Newton hessian
→˓approximation of nonlinear least-squares objective
codeoptions.sqp_nlp.use_line_search = 0; % Disable line-search
→˓for efficiency (only doable with Gauss-Newton approximation)

%% Generate real-time SQP solver
FORCES_NLP(model, codeoptions);

# Define solver options
codeoptions = forcespro.CodeOptions()
codeoptions.maxit = 200 # Maximum number of
→˓iterations

(continues on next page)
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codeoptions.printlevel = 0 # Use printlevel = 2 to
→˓print progress (but not for timings)
codeoptions.optlevel = 3 # 0 no optimization, 1
→˓optimize for size, 2 optimize for speed, 3 optimize for size & speed
codeoptions.nlp.integrator.Ts = integrator_stepsize
codeoptions.nlp.integrator.nodes = 5
codeoptions.nlp.integrator.type = 'ERK4'
codeoptions.solvemethod = 'SQP_NLP'
codeoptions.sqp_nlp.rti = 1
codeoptions.sqp_nlp.maxSQPit = 1

# Generate real-time SQP solver
solver = model.generate_solver(codeoptions)

The number of solved QPs in every iteration is set via sqp_nlp.maxSQPit. It is important
to note that disabling the line search in the SQP algorithm does not guarantee global con-
vergence and hence may result in less robust performance, but produces much faster solve
times. Turning off the line search via sqp_nlp.use_line_search is only allowed when the
Gauss-Newton approximation is on.

11.15.3 Calling the generated SQP solver

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it from MATLAB, or the Python Solver class can be used to use it from within Python:

Matlab

Python

% Set primal initial guess
x0i = model.lb+(model.ub-model.lb)/2;
x0 = repmat(x0i',model.N,1);
problem.x0 = x0;

% Set reference as run-time parameter
problem.all_parameters = ones(model.N,1);

% Set initial condition
problem.xinit = X(:,i);

% Call SQP solver
[output, exitflag, info] = RobotArmSolver(problem);

# Set solver parameters
x0i = (model.ub + model.lb) / 2
x0 = np.tile(x0i, (1, model.N))
problem = {"x0": x0, # Primal initial guess to start solver from

"xinit": xinit, # Initial condition
"all_parameters": np.ones((model.N, 1))} # Reference as a real-time

→˓parameter

# Call SQP solver
output, exitflag, info = solver.solve(problem)

The RobotArmSolver is expected to return an exitflag equal to 1, which corresponds to a suc-
cessful solver. However, note that the QP could become infeasible in some cases. In this case,
one should expect an exitflag of −8.
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11.15.4 Results

The control objective is to track the joint references of −1.2 rad and 1.2 rad respectively, while
keeping the input torque rates below 200 Nm/s in magnitude and the torque states between
−100 N and 70 Nm.

The joint angle and torques trajectories are shown in Figure Figure 11.45 and Figure Figure
11.46 respectively, while the input torque rates are plotted in Figure Figure 11.47. The closed-
loop objective, which is a measure of the control performance is shown in Figure Figure 11.48.

Figure 11.45: Manipulator’s joint angle.

Figure 11.46: Manipulator’s torques at joints.
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Figure 11.47: Manipulator’s torque rates.

Figure 11.48: Manipulator’s closed loop objective.
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11.16 Controlling a DC motor using a FORCESPRO SQP solver

In this example our aim is to control a DC-motor using a FORCESPRO SQP solver. The model
for the DC motor which we consider is borrowed from [BerUnb], to which we refer for further
details. The dynamics of our model is described by the following set of ordinary differential
equations:

𝑥̇1(𝑡) = −𝑅𝑎
𝐿𝑎

𝑥1(𝑡) − 𝑘𝑚
𝐿𝑎

𝑢(𝑡)𝑥2(𝑡) +
𝑢𝑎
𝐿𝑎

𝑥̇2(𝑡) = −𝐵
𝐽
𝑥2(𝑡) +

𝑘𝑚
𝐽
𝑢(𝑡)𝑥1(𝑡) − 𝜏𝑙

𝐽
.

The states 𝑥1 and 𝑥2 model the armature current and motor angular speed of out DC motor
respectively and the control 𝑢models the input field current. The following values are chosen
for our model constants

𝑅𝑎 = 12.548Ω (armature resistance)
𝐿𝑎 = 0.307H (armature inductance)

𝑘𝑚 = 0.23576Nm/A2 (motor constant)
𝑢𝑎 = 60V (armature voltage)
𝐵 = 0.00783Nmsec (total viscuous damping)
𝜏𝐿 = 1.47Nmsec (Load torque)

𝐽 = 0.00385Nmsec2 (total moment of inertia)

The control objective is to track a piecewise constant angular speed. To test the robustness of
out resulting controller we switch reference half way through our simulation. In the first half
of the simulation we will track a constant angular speed 𝑥𝑟𝑒𝑓12 = 2 and then switch to tracking
a constant angular speed 𝑥𝑟𝑒𝑓22 = −2. We collect the 2-dimensional state vector 𝑥 = (𝑥1, 𝑥2)𝑇

and the 1-dimensional control 𝑢 in the vector

𝑧 =

⎛⎝ 𝑢
𝑥1
𝑥2

⎞⎠
You can find the Matlab code below for this example to try it out for yourself in the examples
folder that comes with your client.

11.16.1 Defining the MPC problem

The tracking objective function

Since we want to track a reference value it is natural to consider a least squared cost 𝑓(𝑧, 𝑝) =
||𝑟(𝑧,𝑝)||2

2 for

𝑟(𝑧, 𝑝) = 𝑧3 − 𝑝

Recall that 𝑧3 = 𝑥2 models the motor angular speed which is made to track a piecewise con-
stant reference. The parameter 𝑝 will be equal to 𝑥𝑟𝑒𝑓12 during the first half of the simulation
and equal to 𝑥𝑟𝑒𝑓22 during the second.

The following code snippet reads in the least squared objective

model.LSobjective = @(z,p) sqrt(100) * (z(3) - p);
model.LSobjectiveN = @(z,p) sqrt(100) * (z(3) - p);
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The dynamics

The following code snippet reads in the dynamics (11.16) of our model:

%% model parameters
% Armature inductance (H)
La = 0.307;
% Armature resistance (Ohms)
Ra = 12.548;
% Motor constant (Nm/A^2)
km = 0.23576;
% Total moment of inertia (Nm.sec^2)
J = 0.00385;
% Total viscous damping (Nm.sec)
B = 0.00783;
% Load torque (Nm)
tauL = 1.47;
% Armature voltage (V)
ua = 60;

model.E = [zeros(2,1), eye(2)];
model.continuous_dynamics = @(x,u) [(-1/La)*(Ra*x(1) + x(2)*u(1) - ua);...

(-1/J)*(B*x(2) - km*x(1)*u(1) + tauL)];

Input and state constraints

The following constraints are to be met by out control and state vectors:

1A ≤ 𝑢 ≤ 1.6A
−5A ≤ 𝑥1 ≤ 5A

−10 rad
sec ≤ 𝑥2 ≤ 10 rad

sec

This can be read into the FORCESPRO model as follows

model.lb = [1, -5, -10];
model.ub = [1.6, 5, 10];

Generating the FORCESPRO SQP solver

To generate a suitable SQP solver for out MPC problem one need a model struct as well as
a codeoptions struct. Our model struct has been populated above and we now specify the
codeoptions we want and generating the solver by calling FORCES_NLP. The following code-
snippet shows how this can be done:

%% set codeoptions
codeoptions = getOptions('FORCESPROSolver');
codeoptions.solvemethod = 'SQP_NLP'; % generate SQP solver
codeoptions.nlp.integrator.type = 'ERK4';
codeoptions.nlp.integrator.Ts = 0.01;
codeoptions.nlp.integrator.nodes = 1;
codeoptions.nlp.hessian_approximation = 'gauss-newton';
codeoptions.server = 'https://forces.embotech.com';

%% generate FORCESPRO solver
FORCES_NLP(model, codeoptions);
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Calling the solver

Once the solver has been generated it needs a struct containing an initial guess, initial con-
dition of the ODE, the run-time parameters and the reinitialize field as explained in Se-
quential quadratic programming algorithm. The following code-snippet shows how this can
be done:

% populate run time parameters struct
params.all_parameters = repmat(2, model.N, 1);
params.xinit = zeros(model.neq, 1); % initial condition to ODE
params.x0 = repmat([1.2;zeros(2,1)], model.N, 1); % initial guess
params.reinitialize = 0;

% Solve optimization problem
[output, exitflag, info] = FORCESPROSolver(params);

The FORCESPROSolver is expected to return an exitflag equal to 1, which corresponds to
a successful solve. However, note that the QP could become infeasible in some cases. In this
case, one should expect an exitflag equal to −8.

Results

The control objective is to track an angular speed of 2 and -2 respectively. As can be seen in
Figure 11.53 the controller completes this task. The control (𝑢) is plotted in Figure 11.49, the first
state (𝑥1) is plotted in Figure 11.50 and second state (𝑥2) in Figure 11.51. As a measure of control
quality, the closed loop objective value is plotted in Figure 11.52.

Figure 11.49: The control (𝑢, in blue) as a function of simulation time (s). The control obeys its
constraints (red) throughout the simulation.
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Figure 11.50: The first state (𝑥1, in blue) as a function of simulation time. It obeys its constraints
(red) throughout the simulation.

Figure 11.51: The second state (𝑥2, in blue) as a function of simulation time. It obeys its con-
straints (red) throughout the simulation.
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Figure 11.52: Closed-loop objective value as a function of time

Figure 11.53: Angular speed (blue) and tracked reference (red) value as a function of time.
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11.17 Mixed-integer nonlinear solver: F8 Crusader aircraft

In this example we illustrate the simplicity of the high-level user interface on a mixed-integer
nonlinear program. In particular, we use an F8 Crusader aircraft model described by a set of
ordinary differential equations (ODEs):

𝑥̇0 = − 0.877𝑥0 + 𝑥2 − 0.088𝑥0𝑥2 + 0.47𝑥20 − 0.019𝑥21 − 𝑥20𝑥2 + 3.846𝑥30

− 0.215𝑤 + 0.28𝑥20𝑤 + 0.47𝑥0𝑤
2 + 0.63𝑤3

𝑥̇1 =𝑥2

𝑥̇2 = − 0.4208𝑥0 − 0.396𝑥2 − 0.47𝑥20 − 3.564𝑥30 − 20.967𝑤

+ 6.265𝑥20𝑤 + 46𝑥0𝑤
2 + 61.4𝑤3

The model is taken from [GarJor77] and consists of three differential states: 𝑥0 the angle of
attack in radians, 𝑥1 the pitch angle in radians and 𝑥2 the pitch angle rate in radians per sec-
ond. There is one control input 𝑤, the tail deflection angle in radians. The input is the discrete
component of the model, since it can take values within the discrete set {−0.05236, 0.05236}.
This makes the solution process more complicated in comparison to a nonlinear program, as
the different combinations of inputs have to be checked over the control horizon.

The trajectory of the aircraft is to be computed by solving a mixed-integer nonlinear program
(MINLP). First, we define the stage variable 𝑧 by stacking the input and differential state vari-
ables:

𝑧 = [𝑤, 𝑥0, 𝑥1, 𝑥2]⊤

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.17.1 Defining the problem data

Objective

Our goal is to minimize the distance of the final state to the origin, which can be translated
in the following cost function on the final stage variable:

𝑓(𝑧) = 150𝑥20 + 5𝑥21 + 5𝑥22

The terminal cost function is coded in MATLAB as the following function:

model.objectiveN = @(z) 150 * z(2)^2 + 5 * z(3)^2 + 5 * z(4)^2;

Moreover, control inputs are penalized at every stage via the following stage cost function:

model.objective = @(z) 0.1 * z(1)^2;

Equality constraints

In this example, the only equality constraints are related to the dynamics. They are provided
to FORCESPRO in continuous form. The discretization is then computed internally by the
FORCESPRO integrators.

In the code snippet below, it is important to notice that the control input 𝑤 is replaced with 𝑢
such that

𝑤 =̂ 0.05236 · (2𝑢− 1)

If 𝑤 has values within {−0.05236, 0.05236}, then 𝑢 lies within the binary set {0, 1}.
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wa = 0.05236;
wa2 = wa^2;
wa3 = wa^3;
continuous_dynamics = @(x, u) [-0.877 * x(1) + x(3) - 0.088 * x(1) * x(3)...

+ 0.47 * x(1) * x(1) - 0.019 * x(2) * x(2)...
- x(1) * x(1) * x(3)...
+ 3.846 * x(1) * x(1) * x(1)...
- 0.215 * wa * (2 * u(1) - 1)...
+ 0.28 * x(1) * x(1) * wa * (2 * u(1) - 1)...
+ 0.47*x(1)*wa2*(2*u(1)-1)*(2*u(1)-1)...
+ 0.63*wa3*(2*u(1)-1)*(2*u(1)-1)*(2*u(1)-1);
x(3);
-4.208*x(1) - 0.396 * x(3) - 0.47 * x(1)*x(1)...
- 3.564 * x(1) * x(1) * x(1)...
- 20.967 * wa * (2 * u(1) - 1)...
+ 6.265 * x(1) * x(1) * wa * (2 * u(1) -1 )...
+ 46.0 * x(1)*wa2*(2*u(1)-1)*(2*u(1)-1)...
+ 61.4*wa3*(2*u(1)-1)*(2*u(1)-1)*(2*u(1)-1)];

model.continuous_dynamics = continuous_dynamics;
model.E = [zeros(3, 1), eye(3)];

Inequality constraints

The maneuver is subjected to a set of constraints, involving only the simple bounds:

0 rad ≤𝑢 ≤ 1 rad

−10 rad ≤𝑥0 ≤ 10 rad

−10 rad ≤𝑥1 ≤ 10 rad

−10 rad/sec ≤𝑥2 ≤ 10 rad/sec

Initial and final conditions

The goal of the maneuver is to steer the aircraft from an initial condition with nose pointing
upwards

(0.4655, 0, 0)𝑇

to the origin.

11.17.2 Defining the MPC problem

With the above defined MATLAB functions for objective and equality constraints, we can com-
pletely define the MINLP formulation in the next code snippet. For this example, the number
of stages has been set to 𝑁 = 100.

In the code snippet below, it is important to notice that the lower and upper bounds are
declared as parametric before generating the solver. This needs to be done for generating
mixed-integer NLP solvers. Lower and upper bounds are meant to be provided at run-time.

%% Problem dimension
nx = 3;
nu = 1;
nz = nx + nu;
model.N = 100;

(continues on next page)
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(continued from previous page)

model.nvar = nz;
model.neq = nx;

%% Indices of initial state in stage variable
model.xinitidx = nu+1:model.nvar;

%% Lower and upper bound need to be set as parametric for generating an MINLP
→˓solver
model.lb = [];
model.ub = [];
model.lbidx{1} = 1 : nu;
model.ubidx{1} = 1 : nu;
for i = 2 : model.N

model.lbidx{i} = 1 : model.nvar;
model.ubidx{i} = 1 : model.nvar;

end

%% Dynamics
wa = 0.05236;
wa2 = wa^2;
wa3 = wa^3;
continuous_dynamics = @(x, u) [-0.877 * x(1) + x(3) - 0.088 * x(1) * x(3)...

+ 0.47 * x(1) * x(1) - 0.019 * x(2) * x(2)...
- x(1) * x(1) * x(3)...
+ 3.846 * x(1) * x(1) * x(1)...
- 0.215 * wa * (2 * u(1) - 1)...
+ 0.28 * x(1) * x(1) * wa * (2 * u(1) - 1)...
+ 0.47 *x(1)*wa2*(2*u(1)-1)*(2*u(1)-1)...
+ 0.63*wa3*(2*u(1)-1)*(2*u(1)-1)*(2*u(1)-1);
x(3);
-4.208 * x(1) - 0.396 * x(3)...
- 0.47 * x(1) * x(1)...
- 3.564 * x(1) * x(1) * x(1)...
- 20.967 * wa * (2 * u(1) - 1)...
+ 6.265*x(1)*x(1)*wa*(2*u(1)-1)...
+ 46.0*x(1)*wa2*(2*u(1)-1)*(2*u(1)-1)...
+ 61.4*wa3*(2*u(1)-1)*(2*u(1)-1)*(2*u(1)-1)];

model.continuous_dynamics = continuous_dynamics;
model.E = [zeros(nx, nu), eye(nx)];

%% Objective
mode.objective = @(z) 0.1 * z(nu)^2;
model.objectiveN = @(z) 150 * z(nu+1)^2...

+ 5 * z(nu+2)^2...
+ 5 * z(nu+3)^2;

%% Indices of integer variables within every stage
for s = 1:model.N

model.intidx{s} = [1];
end

11.17.3 Generating an MINLP solver

We have now populated model with the necessary fields to generate a mixed-integer solver
for our problem. Now we set some options for our solver and then use the function
FORCES_NLP to generate a solver for the problem defined by model with the initial state and
the lower and upper bounds as a parameters:
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%% Set code-generation options
codeoptions = getOptions('F8aircraft');
codeoptions.printlevel = 1;
codeoptions.misra2012_check = 1;
codeoptions.maxit = 2000;
codeoptions.timing = 0;
codeoptions.nlp.integrator.type = 'IRK2';
codeoptions.nlp.integrator.Ts = 0.05;
codeoptions.nlp.integrator.nodes = 20;

%% Generate MINLP solver
FORCES_NLP(model, codeoptions);

In the code snippet above, we have set some integrator options, since the continuous-time
dynamics has been provided in the model. The branch-and-bound search can be run on
several threads in parallel by setting the run-time parameter numThreadsBnB equal to the
number of threads to be used. The default value is 1. Moreover, the maximum number of
threads for the branch-and-bound search can be set via the option max_num_threads. By
default, max_num_threads = 4.

11.17.4 Calling the generated MINLP solver

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it:

%% Set run-time parameters
problem.(sprintf('lb%02d', 1)) = 0;
problem.(sprintf('ub%02d', 1)) = 1;
for s = 2:99

problem.(sprintf('lb%02d', s)) = [0, -1e1 * ones(1, 3)]';
problem.(sprintf('ub%02d', s)) = [1, 1e1 * ones(1, 3)]';

end
problem.(sprintf('lb%02d', 100)) = [0, -1e1 * ones(1, 3)]';
problem.(sprintf('ub%02d', Nstages)) = [1, 1e1 * ones(1, 3)]';

problem.x0 = repmat([0; zeros(3, 1)], 100, 1);
problem.xinit = zeros(3, 1);
problem.xinit(1) = 0.4655;

%% Call MINLP solver
[sol, exitflag, info] = F8aircraft(problem);

11.17.5 Providing an initial guess at run-time

In order to provide an guess for the incumbent, the following code-generation options need
to be enabled:

codeoptions.minlp.int_guess = 1;
codeoptions.minlp.round_root = 0; % Default value is 1
codeoptions.minlp.int_guess_stage_vars = [1]; % An integer guess is provided for
→˓variable 1 at every stage

Then the incumbent guess can be set at run-time via

for s = 1:Nstages
problem.(sprintf('int_guess%03d', s)) = [0];

end

(continues on next page)
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(continued from previous page)

for s = 1:2
problem.(sprintf('int_guess%03d', s)) = [1];

end
problem.(sprintf('int_guess%03d', 39)) = [1];
for s = 41:42
problem.(sprintf('int_guess%03d', s)) = [1];

end
for s = 85:90

problem.(sprintf('int_guess%03d', s)) = [1];
end

11.17.6 Changing the parallelization strategy at run-time

When running the MINLP solver on several threads with numThreadsBnB >= 1, the paral-
lelization strategy can be changed via

problem.parallelStrategy = 0; % 0 (one shared priority queue, default), 1 (one
→˓priority queue per thread)

11.17.7 Results

The control objective is to drive the angle of attack as close as possible to zero within a five
seconds time frame. The control input is the tail deflection angle, which can take values with
the set {−0.05236, 0.05236} and the initial state is (0.4655, 0, 0)𝑇 , where the first component is
the angle of attack, the second component is the pitch angle and the third component is the
pitch angle rate.

The angle of attack computed by FORCESPRO MINLP solver running on one thread is shown
in Figure Figure 11.54 and the input sequence is in Figure Figure 11.55. One can notice the
bang-bang behaviour of the solution. When running on three threads the FORCESPRO
MINLP solver provides a solution with lower final primal objective. Results are shown on Fig-
ures Figure 11.56 and Figure 11.57.

Figure 11.54: Aircraft’s angle of attack over time computed with one thread.
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Figure 11.55: Aircraft’s tail deflection angle over time with one thread.

Figure 11.56: Aircraft’s angle of attack over time computed with three threads.
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Figure 11.57: Aircraft’s tail deflection angle over time with three threads.
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Chapter 12

Parametric problems

Parameters (or real-time data) are a key concept in FORCESPRO. Usually at least one vector in
an embedded optimization problem will change between two calls to the solver. In MPC, the
initial state changes usually between two sampling times. But other data can change too, for
example because you are working with linearizations of non-linear dynamics, or because the
cost matrices of a quadratic objective function are tuned online. The following API is available
when using the low-level interface only and cannot be used with the high-level interface.

12.1 Defining parameters

FORCESPRO gives you full control over the parametrization of the optimization problem: You
can define all data matrices and vectors to be parametric. To define a parameter in MATLAB,
use the function

parameter = newParam(name, maps2stage, maps2data);

and in Python, use

stages.newParam(name, maps2stage, maps2data)

where name is the parameter name, which you need to be set before calling the solver. The
vector of indices maps2stage defines to which stages the parameters maps. The last argu-
ment maps2data has to be one of the following strings

Table 12.1: Possible string values for argument maps2data
Cost function Equality constraints Inequality constraints
'cost.H' 'eq.c' 'ineq.b.lb'
'cost.f' 'eq.C' 'ineq.b.ub'

'eq.D' 'ineq.p.A'
'ineq.p.b'
'ineq.q.Q'
'ineq.q.l'
'ineq.q.r'

From FORCESPRO 1.8.0, the user is allowed to provide a parameter for all problem stages at
once. All stage parameters are then stacked into one vector or matrix before getting passed
to the solver at runtime. FORCESPRO is notified about this by having

maps2stage = [];
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For instance, in order to provide a parametric linear cost across all stages, one should use the
following code at codegen.

parameter = newParam('linear_stage_cost', [], 'cost.f');

At runtime, the user is expected to provide the linear stage cost as follows.

problem.linear_stage_cost = repmat(rand(problem.nvar, 1), problem.horzLength, 1);

where problem.horzLength is the horizon length and problem.nvar is the number of stage
variables.

Note: The stacked parameters feature is only available in MATLAB from FORCESPRO ‘1.8.0’.

12.2 Example

To define the linear term of the cost of stages 1 to 5 as a parameter, use the following com-
mand in MATLAB

parameter1 = newParam('linear_cost', 1:5, 'cost.f');

and in Python, use

stages.newParam('linear_cost', range(1, 6), 'cost.f')

Note that this will generate only one parameter and the same runtime data will be mapped
to stages 1 to 5. If the runtime data should be different for each stage one would have to
generate five differents in this case.

We can also have a second parameter. For instance, the right handside of the first equality
constraints, which is a very common caes in MPC. In MATLAB

parameter2 = newParam('RHS_first_equality_constraint', 1, 'eq.c');

In Python

stages.newParam('RHS_first_equality_constraint', [1], 'eq.c')

12.3 Parametric Quadratic Constraints

As there may be multiple quadratic constraints for every stage, one needs to specify which
ones are to be parametric. One can use a fourth argument in the newParam call, as shown
below. In MATLAB

parameter = newParam(name, maps2stage, maps2data, idxWithinStage);

In Python

stages.newParam(name, maps2stage, maps2data, idxWithinStage)

where idxWithinStage denotes the index of the quadratic constraints to which this parame-
ters applies.
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12.4 Diagonal Hessians

In case your parametric Hessian is diagonal, you should use the fourth argument of newParam
as shown below. In MATLAB

parameter1 = newParam('Hessians', 1:5, 'cost.H', 'diag');

In Python

stages.newParam('Hessians', range(1,6), 'cost.H', 'diag')

The FORCESPRO solver will then only expect a vector as a parameter. The 'diag' keyword is
currently only valid for hessian matrices related to the objective function.

12.5 Sparse Parameters

If your parameters are not diagonal but they have a sparse structure that can be exploited for
performance, you can use the fourth and fifth arguments of newParam to let FORCESPRO
know about the sparsity pattern. In MATLAB

parameter2 = newParam('Ai', 1:5, 'ineq.p.A', 'sparse', [zeros(5, 6) rand(5, 2)]);

In Python

stages.newParam('Ai',range(1,6),'ineq.p.A','sparse',numpy.hstack((numpy.zeros(5,6),
→˓random.random((5,2)))))

The fifth argument is used to let FORCESPRO know about the location of the non-zero el-
ements. When a solver is generated using sparse parameters it is the responsibility of the
user to pass on parameters with the correct sparsity pattern to the solver. There will be no
warnings thrown at runtime.

Sparse parameter values have to be passed as a column vector of nonzero elements, i.e. to
assign the values of matrix B to sparse parameter Ci one should use the following: In MATLAB

problem.Ci = nonzeros(sparse(B));

In Python

problem.Ci = B[numpy.nonzeros(B)]

Note that parameters with a general sparsity structure defined by the fifth argument are cur-
rently only supported for polytopic constraints. For the equality constraint matrices, only the
structure [0 A], where A is assumed to be dense, is currently supported.

12.6 Special Parameters

To prevent having to transfer entire matrices for parameters with few changing elements at
runtime, one can specify a sixth argument to let FORCESPRO know about the location of the
elements that will be supplied at runtime. In MATLAB

parameter2 = newParam('Ci', 1:5,'eq.C','sparse',Cstruc,Cvar)

In Python
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stages.newParam('Ci',range(1,6),'eq.C','sparse',Cstruc,Cvar)

Note that in this case the constant values will be taken from the data supplied in the field
Cstruc. At runtime the user only has to supply a column vector including the time-varying
elements marked in the field Cvar. The ordering should be column major.

12.7 Python: Column vs Row Major Storage Format

Unlike Matlab, numpy stores arrays by default in row-major format internally. Since FORCE-
SPRO expects the parameters in column major storage format, a conversion is necessary.
This conversion is automatically performed by the Python interface when the solver is called.
To avoid the conversion every time the solver is called, you should use the following way of
creating the arrays storing parameters:

a = array([1, 2, 3, 4, 5, 6])
b = a.reshape(2,3,order='F')

The above code reshapes the array into a (2,3) Matrix stored in column major (Fortran) format.

228 Chapter 12. Parametric problems



FORCESPRO User Manual

Chapter 13

Code Deployment

13.1 Main Targets

Important: When deploying to a target hardware platform, the library included in the
lib_target directory of the generated solver should be used instead of the library in the lib
directory.

Main targets include:

• x86 platforms

• x86_64 platforms

• 32bit ARM-Cortex-A platforms

• 32bit ARM-Cortex-M platforms (no shared libraries)

• 64bit ARM-Cortex-A platforms (AARCH64 toolchain)

• 64bit ARM-Cortex-A platforms (Integrity toolchain)

• NVIDIA platforms with ARM-Cortex-A processors

• PowerPC platforms with GCC compiler

• National Instruments compactRIO platforms with NILRT GCC compiler (Linux RTOS)

You can check here to find the correct naming option for each platform.

13.1.1 High-level interface

The steps to deploy and simulate a FORCESPRO controller on most targets are detailed be-
low.

1. In the High-level interface example BasicExample.m set the code generation options:

codeoptions.platform = '<platform_name>'; % to specify the platform
codeoptions.printlevel = 0; % optional, on some platforms printing is not supported
codeoptions.cleanup = 0; % to keep necessary files for target compile

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the high-level interface.

2. Additionally to your solver you will receive the following files generated by CasADi:

• FORCESNLPsolver_casadi2forces.c

229



FORCESPRO User Manual

• FORCESNLPsolver_casadi.c

• FORCESNLPsolver_casadi.h

3. For most target platforms you will receive the following compiled files:

• For MinGW/Linux/MacOS:

– a static library file libFORCESNLPsolver.a inside the folder lib_target

– a shared library file libFORCESNLPsolver.so inside the folder lib_target

• For Windows:

– a static library file FORCESNLPsolver_static.lib inside the folder lib_target

– a dynamic library file FORCESNLPsolver.dll with its definition file for compilation
FORCESNLPsolver.lib inside the folder lib_target

You need only one of those to build the solver.

Important: The shared library and the dynamic library if used for building need to be present
during runtime as well.

4. Create an interface to call the solver and perform a simulation/test.

You can find a C interface for this example to try it out for yourself in the examples folder that
comes with your client.

5. Copy in the target platform:

• The FORCESNLPsolver folder

• The source files from step 2

• The interface from step 4

6. Compile the solver. The compilation command would be (supposing you are in the
directory which contains the FORCESNLPsolver folder):

<Compiler_exec> HighLevel_BasicExample.c <compiled_solver> FORCESNLPsolver_
→˓casadi2forces.c FORCESNLPsolver_casadi.c <additional_libs>

Where:

• <Compiler_exec> would be the compiler used in the target

• <compiled_solver> would be one of the compiled files of step 3

• <additional_libs>would be possible libraries that need to be linked to resolve existing
dependencies.

– For Linux/MacOS it’s usually necessary to link the math library (-lm)

– For Windows you usually need to link the iphlpapi.lib library (it’s distributed with
the Intel Compiler, MinGW as well as Matlab) and sometimes some additional intel
libraries (those are included in the FORCESPRO client under the folder libs_Intel
– if missing they are downloaded after code generation)
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13.1.2 Y2F interface

The steps to deploy and simulate a FORCESPRO controller on most targets are detailed be-
low.

1. In the Y2F interface example mpc_basic_example.m set the code generation options:

codeoptions.platform = '<platform_name>'; % to specify the platform
codeoptions.printlevel = 0; % optional, on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “simpleMPC_solver”,
placed in the folder “Y2F”) using the Y2F interface.

2. The Y2F solver is composed of a main solver which calls multiple internal solvers. The
file describing the main solver is:

• simpleMPC_solver.c inside the folder interface

3. The internal solvers are provided as compiled files. For most target platforms you will
receive the following compiled files:

• For MinGW/Linux/MacOS:

– a static library file libinternal_simpleMPC_solver_1.a inside the folder
lib_target

– a shared library file libinternal_simpleMPC_solver_1.so inside the folder
lib_target

• For Windows:

– a static library file internal_simpleMPC_solver_1_static.lib inside the folder
lib_target

– a dynamic library file internal_simpleMPC_solver_1.dllwith its definition file for
compilation internal_simpleMPC_solver_1.lib inside the folder lib_target

You need only one of those to build the solver.

Important: The shared library and the dynamic library if used for building need to be present
during runtime as well.

4. Create an interface to call the solver and perform a simulation/test.

You can find a C interface for this example to try it out for yourself in the examples folder that
comes with your client.

5. Copy in the target platform:

• The simpleMPC_solver folder

• The interface from step 4

6. Compile the solver. The compilation command would be (supposing you are in the
directory which contains the simpleMPC_solver folder):

<Compiler_exec> Y2F_mpc_basic_example.c simpleMPC_solver/interface/simpleMPC_
→˓solver.c <compiled_solver> <additional_libs>

Where:

• <Compiler_exec> would be the compiler used in the target

• <compiled_solver> would be one of the compiled files of step 3

• <additional_libs>would be possible libraries that need to be linked to resolve existing
dependencies.
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– For Linux/MacOS it’s usually necessary to link the math library (-lm)

– For Windows you usually need to link the iphlpapi.lib library (it’s distributed with
the Intel Compiler, MinGW as well as Matlab) and sometimes some additional intel
libraries (those are included in the FORCESPRO client under libs_Intel – if miss-
ing they are downloaded after code generation)
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13.2 dSPACE deployment through Simulink Coder

This process applies to the following dSPACE platforms

• dSPACE MicroAutoBox II

• dSPACE AutoBox

• dSPACE MicroLabBox

Important: When deploying to a target hardware platform, the library included in the
lib_target directory of the generated solver should be used instead of the library in the lib
directory.

13.2.1 Platform Specific Configurations

Platform name codeoption

When generating code for HW target platforms, codeoptions.platform needs to be set.

• dSPACE MicroAutoBox II: 'dSPACE-MABII'

• dSPACE AutoBox: 'dSPACE-AutoBox'

• dSPACE MicroLabBox: 'dSPACE-MicroLabBox'

Simulink Model HW Target Configuration

When creating a Simulink Model for HW target platforms, certain hardware options need to
be set.

• Simulink Model Template:

– dSPACE MicroAutoBox II: RTI1401

– dSPACE AutoBox: RTI1007

– dSPACE MicroLabBox: RTI1202

• System target file:

– dSPACE MicroAutoBox II: rti1401.tlc

– dSPACE AutoBox: rti1007.tlc

– dSPACE MicroLabBox: rti1202.tlc

• Template makefile:

– dSPACE MicroAutoBox II: rti1401.tmf

– dSPACE AutoBox: rti1007.tmf

– dSPACE MicroLabBox: rti1202.tmf

13.2.2 High-level interface

The steps to deploy and simulate a FORCESPRO controller on a dSPACE platform are detailed
below.

1. (Figure 13.1) Set the code generation options (for <platform_name> see Platform name
codeoption):
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codeoptions.platform = '<platform_name>'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported
codeoptions.cleanup = 0; % to keep necessary files for target compile

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the high-level interface.

Figure 13.1: Set the appropriate code generation options.

2. (Figure 13.2) Create a new Simulink model using the Simulink model template provided
by dSPACE (for <simulink_model_template> see Simulink Model HW Target Configu-
ration).

3. (Figure 13.3) Populate the Simulink model with the system you want to control.

4. (Figure 13.4) Make sure the FORCESNLPsolver_simulinkBlock.mexw64 file (created dur-
ing code generation) is on the Matlab path.

5. (Figure 13.5) Open the FORCESNLPsolver_lib.mdl Simulink model file, contained in the
interface folder of the FORCESNLPsolver folder created during code generation.

6. (Figure 13.6) Copy-paste the FORCESPRO Simulink block into your simulation model and
connect its inputs and outputs appropriately.

7. (Figure 13.7) Access the Simulink model’s options.

8. (Figure 13.8) In the “Solver” tab, set the options:

• Simulation start/stop time: Depending on the simulation wanted.

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

9. (Figure 13.9) In the “Code Generation” tab, set the options (for <tlc_file> and
<makefile_template> see Simulink Model HW Target Configuration):
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Figure 13.2: Create a Simulink model.

Figure 13.3: Populate the Simulink model.
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Figure 13.4: Add the folder containing the .mexw64 solver file to the Matlab path.
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Figure 13.5: Open the generated Simulink solver model.

Figure 13.6: Copy-paste and connect the FORCESPRO block.
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Figure 13.7: Open the Simulink model options.

Figure 13.8: Set the Simulink solver options.
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• System target file: <tlc_file>

• Language: C

• Generate makefile: On

• Template makefile: <makefile_template>

• Make command: make_rti

10. (Figure 13.10) In the “Code Generation/Custom Code” tab, include the directories:

• BasicExample

• BasicExample\FORCESNLPsolver\interface

• BasicExample\FORCESNLPsolver\lib_target

11. (Figure 13.11) In the “Code Generation/Custom Code” tab, add the source files:

• FORCESNLPsolver_simulinkBlock.c

• FORCESNLPsolver_casadi2forces.c

• FORCESNLPsolver_casadi.c

12. (Figure 13.12) In the “Code Generation/Custom Code” tab, add the library file:

• FORCESNLPsolver.lib

Figure 13.9: Set the Simulink code generation options.

13. (Figure 13.13) Access the FORCESPRO block’s parameters.

14. (Figure 13.14) Remove the “FORCESNLPsolver” prefix from the S-function module.

15. (Figure 13.15) Compile the code of the Simulink model. This will also automatically load
the model to the connected dSPACE platform.

16. Deployment is complete and simulations can now be run on the dSPACE platform.
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Figure 13.10: Add the directories included for the code generation.

Figure 13.11: Add the source files used for the code generation.
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Figure 13.12: Add the libraries used for the code generation.

Figure 13.13: Open the FORCESPRO block’s parameters.
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Figure 13.14: Remove the leading solver name from the S-function module.

Figure 13.15: Compile the code of the Simulink model.

242 Chapter 13. Code Deployment



FORCESPRO User Manual

13.2.3 Y2F interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a dSPACE platform are detailed
below.

1. (Figure 13.16) Set the code generation options (for <platform_name> see Platform name
codeoption):

codeoptions.platform = '<platform_name>'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “simplempc_solver”,
placed in the folder “Y2F”) using the Y2F interface.

Figure 13.16: Set the appropriate code generation options.

2. (Figure 13.17) Create a new Simulink model using the Simulink model template provided
by dSPACE (for <simulink_model_template> see Simulink Model HW Target Configu-
ration).

3. (Figure 13.18) Populate the Simulink model with the system you want to control.

4. (Figure 13.19) Make sure the simplempc_solver_simulinkBlock.mexw64 file (created
during code generation) is on the Matlab path.

5. (Figure 13.20) Copy-paste the FORCESPRO Simulink block, contained in the created
y2f_simulink_lib.slx Simulink model file, into your simulation model and connect
its inputs and outputs appropriately.

6. (Figure 13.21) Access the Simulink model’s options.

7. (Figure 13.22) In the “Solver” tab, set the options:

• Simulation start/stop time: Depending on the simulation wanted.
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Figure 13.17: Create a Simulink model.

Figure 13.18: Populate the Simulink model.
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Figure 13.19: Add the folder containing the .mexw64 solver file to the Matlab path.

Figure 13.20: Copy-paste and connect the FORCESPRO block.
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• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

Figure 13.21: Open the Simulink model options.

8. (Figure 13.23) In the “Code Generation/RTI general build options” tab, set the options (for
<tlc_file> and <makefile_template> see Simulink Model HW Target Configuration):

• System target file: <tlc_file>

• Language: C

• Generate makefile: On

• Template makefile: <makefile_template>

• Make command: make_rti

9. (Figure 13.24) In the “Code Generation/Custom Code” tab, include the directories:

• Y2F

• Y2F\simplempc_solver\interface

• Y2F\simplempc_solver\lib_target

10. (Figure 13.25) In the “Code Generation/Custom Code” tab, add the source files:

• simplempc_solver_simulinkBlock.c

• simplempc_solver.c

11. (Figure 13.26) In the “Code Generation/Custom Code” tab, add the library files:

• internal_simplempc_solver_1.lib

12. (Figure 13.27) Compile the code of the Simulink model. This will also automatically load
the model to the connected dSPACE platform.

13. Deployment is complete and simulations can now be run on the dSPACE platform.
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Figure 13.22: Set the Simulink solver options.

Figure 13.23: Set the Simulink code generation options.
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Figure 13.24: Add the directories included for the code generation.

Figure 13.25: Add the source files used for the code generation.
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Figure 13.26: Add the libraries used for the code generation.

Figure 13.27: Compile the code of the Simulink model.
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13.3 dSPACE deployment through ConfigurationDesk

This process applies to the following dSPACE platforms

• dSPACE MicroAutoBox III

• dSPACE SCALEXIO

Important: When deploying to a target hardware platform, the library included in the
lib_target directory of the generated solver should be used instead of the library in the lib
directory.

13.3.1 Code Generation

The steps to deploy a FORCESPRO controller on a dSPACE platform are detailed below.

1) (Figure 13.28) Set the code generation options:

When generating code for HW target platforms, codeoptions.platform needs to be set.

• dSPACE MicroAutoBox III: 'dSPACE-MABXIII'

• dSPACE SCALEXIO: 'dSPACE-SCALEXIO'

codeoptions.platform = '<platform_name>'; % to generate code for the dSPACE
→˓platform
codeoptions.printlevel = 0; % printing should be disabled on target HW
codeoptions.cleanup = 0; % to keep necessary files for target compile

Figure 13.28: Set the appropriate code generation options.

1) Create a new Simulink model (henceforth referred to as dSPACE.slx) using the dSPACE
Run-Time Target template provided by dSPACE and save it in the BasicExample folder
(see Figure 13.29).

2) Populate the Simulink model with the system you want to control (see Figure 13.30).

4) Run the BasicExample.m script to perform code generation for your solver (henceforth
referred to as FORCESNLPsolver, placed in the folder “BasicExample”). This will create
the necessary files for your building (see Figure 13.31 , Figure 13.32 and Figure 13.33).

5) The FORCESNLPsolver_simulinkBlock.<mex_extension> file (created during code
generation) needs to be in the same path as your model (see Figure 13.34).
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Figure 13.29: Create a Simulink model.

Figure 13.30: Populate the Simulink model.
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Figure 13.31: Generated files.
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Figure 13.32: Solver interface files.

Figure 13.33: Solver libraries.

6) Open the FORCESNLPsolver_lib.mdl Simulink model file, contained in the interface
folder of the FORCESNLPsolver folder created during code generation (see Figure 13.35).

7) Copy-paste the FORCESPRO Simulink block into your simulation model and connect its
inputs and outputs appropriately (see Figure 13.36).

8) Access the Simulink model’s options. In the “Solver” tab, set the options (see Figure
13.37):

• Simulation start/stop time: Depending on the simulation wanted.

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

9) In the “Code Generation” tab, set the options (see Figure 13.38):

• System target file: dsrt.tlc

• Language: C / C++

• Generate makefile: Checked

• Template makefile: dsrt_default_tmf

• Make command: make_dsrt

10) In the “Code Generation/Custom Code” tab, include the directories (see Figure 13.39):

• .\FORCESNLPsolver\include

• .\FORCESNLPsolver\interface

• .\FORCESNLPsolver\lib_target
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Figure 13.34: The .<mex_extension> solver file is in the same path as the model.
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Figure 13.35: Open the generated Simulink solver model.

Figure 13.36: Copy-paste and connect the FORCESPRO block.
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11) In the “Code Generation/Custom Code” tab, add the source files (see Figure 13.40):

• FORCESNLPsolver_simulinkBlock.c

• FORCESNLPsolver_casadi2forces.c

• FORCESNLPsolver_casadi.c

12) In the “Code Generation/Custom Code” tab, add the library file (see Figure 13.41):

• libFORCESNLPsolver.a

Figure 13.37: Set the Simulink solver options.

13) Access the FORCESPRO block’s parameters (see Figure 13.42).

14) Remove the “FORCESNLPsolver” prefix from the S-function module (see Figure 13.43).

15) Create a new Project and Application in ConfigurationDesk. Select directory of project,
name of project and application, the model dSPACE.slx as the application process and
connected dSPACE platform to deploy to (see Figure 13.44).

16) Go to the tasks tab and make sure the period of the Periodic Task matches the fixed step
size selected in the Simulink model options (see Figure 13.45).

17) Go to the build tab and start the building process. After building is complete the appli-
cation will be loaded automatically in the dSPACE platform (see Figure 13.46).
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Figure 13.38: Set the Simulink code generation options.

Figure 13.39: Add the directories included for the code generation.
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Figure 13.40: Add the source files used for the code generation.

Figure 13.41: Add the libraries used for the code generation.
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Figure 13.42: Open the FORCESPRO block’s parameters.
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Figure 13.43: Remove the leading solver name from the S-function module.
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Figure 13.44: Create project and application in ConfigurationDesk.

Figure 13.45: Set period of Periodic Task.
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Figure 13.46: Build the project.
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13.3.2 Solver Execution

The steps to simulate a FORCESPRO controller on a dSPACE platform are detailed below.

1) After code generation with FORCESPRO and building with the ConfigurationDesk, the
ConfigurationDesk project will have generated files to use to run your model on the
dSPACE platform (see Figure 13.47 and Figure 13.48).

Figure 13.47: The generated files from the ConfigurationDesk building.

Figure 13.48: The files necessary for the simulation of the FORCESPRO controller.

2) Open dSpace Control Desk and select create new project and name it (see Figure 13.49).

3) Name the experiment to execute (see Figure 13.50).

4) Select the platform to which you will deploy the generated executable (see Figure 13.51).

5) Import the variable description file BasicExample.sdf in order to have access to the
model variables and see the results of the execution (see Figure 13.52).

6) On the project layout select the tab Variables and on the BasicExample.sdf category
expand Model Root.

7) Select U OUTPUT and X OUTPUT and Drag & Drop all the input variables together to the
Layout. In the opened menu select Time Plotter (see Figure 13.53 and Figure 13.54).

8) To see all the plots concurrently right-click on the left of the Y-axis and select
YAxes-view> Horizontal stacked (see Figure 13.55).
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Figure 13.49: Start a new project and name it.

Figure 13.50: Name your experiment.
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Figure 13.51: Select the dSPACE platform.

Figure 13.52: Import the variable description file.
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Figure 13.53: Add the inputs of U OUTPUT in a Time Plotter.

Figure 13.54: Add the inputs of X OUTPUT in the same Time Plotter.
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Figure 13.55: Select to show all the signals on the same plot with their own Y-axes
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9) Application should have already been loaded from the building of ConfigurationDesk.
Otherwise, select the Platforms/Devices tab. Right-Click on your platform and select
Real-Time Application> Load. Choose the executable file BasicExample.rta (see
Figure 13.56 and Figure 13.57).

10) Select Go Online and Start Measuring to see the results. (see Figure 13.58 and Figure
13.59).

Figure 13.56: Load the application on the dSPACE platform.

Figure 13.57: Select BasicExample.rta from the ConfigurationDesk project folder.

268 Chapter 13. Code Deployment



FORCESPRO User Manual

Figure 13.58: Buttons Go Online and Start Measuring to receive execution results.

Figure 13.59: Plots and results from experiment on a dSPACE platform.
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13.4 Speedgoat

Important: When deploying to a target hardware platform, the library included in the
lib_target directory of the generated solver should be used instead of the library in the lib
directory.

13.4.1 High-level interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a Speedgoat platform are de-
tailed below.

1. (Figure 13.60) Set the code generation options:

codeoptions.platform = 'Speedgoat-x86'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported
codeoptions.cleanup = 0; % to keep necessary files for target compile

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the high-level interface.

2. (Figure 13.61) Create a new Simulink model using the blank model template.

3. (Figure 13.62) Populate the Simulink model with the system you want to control.

4. (Figure 13.63) Make sure the FORCESNLPsolver_simulinkBlock.mexw64 file (created
during code generation) is on the Matlab path.

5. (Figure 13.64) Open the FORCESNLPsolver_lib.mdl Simulink model file, contained in
the interface folder of the FORCESNLPsolver folder created during code generation.

6. (Figure 13.65) Copy-paste the FORCESPRO Simulink block into your simulation model
and connect its inputs and outputs appropriately.

7. (Figure 13.66) Access the Simulink model’s options.

8. (Figure 13.67) In the “Solver” tab, set the options:

• Simulation start/stop time: Depending on the simulation wanted.

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

9. (Figure 13.68) In the “Code Generation” tab, set the options:

• System target file: slrt.tlc

• Language: C

• Generate makefile: On

• Template makefile: slrt_default_tmf

• Make command: make_rtw

10. (Figure 13.69) In the “Code Generation/Custom Code” tab, include the directories:

• BasicExample

• BasicExample\FORCESNLPsolver\interface

• BasicExample\FORCESNLPsolver\lib_target

11. (Figure 13.70) In the “Code Generation/Custom Code” tab, add the source files:
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• FORCESNLPsolver_simulinkBlock.c

• FORCESNLPsolver_casadi2forces.c

• FORCESNLPsolver_casadi.c

12. (Figure 13.71) In the “Code Generation/Custom Code” tab, add the library file:

• FORCESNLPsolver.lib

13. (Figure 13.72) Access the FORCESPRO block’s parameters.

14. (Figure 13.73) Remove “FORCESNLPsolver” and “FORCESNLPsolver_simulinkBlock”
from the S-function module.

15. (Figure 13.74) Compile the code of the Simulink model. This will also automatically load
the model to the connected Speedgoat platform.

16. Deployment is complete and simulations can now be run on the Speedgoat platform.

17. Run the simulation on the Speedgoat platform.

You can find the Matlab code of this simulation to try it out for yourself in the examples
folder that comes with your client.

Figures

Figure 13.60: Set the appropriate code generation options.
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Figure 13.61: Create a Simulink model.

Figure 13.62: Populate the Simulink model.
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Figure 13.63: Add the folder containing the .mexw64 solver file to the Matlab path.

Figure 13.64: Open the generated Simulink solver model.
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Figure 13.65: Copy-paste and connect the FORCESPRO block.

Figure 13.66: Open the Simulink model options.
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Figure 13.67: Set the Simulink solver options.

Figure 13.68: Set the Simulink code generation options.
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Figure 13.69: Add the directories included for the code generation.
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Figure 13.70: Add the source files used for the code generation.
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Figure 13.71: Add the libraries used for the code generation.

Figure 13.72: Open the FORCESPRO block’s parameters.
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Figure 13.73: Remove the default data from the S-function module.
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Figure 13.74: Compile the code of the Simulink model.

280 Chapter 13. Code Deployment



FORCESPRO User Manual

13.4.2 Y2F interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a Speedgoat platform are de-
tailed below.

1. (Figure 13.75) Set the code generation options:

codeoptions.platform = 'Speedgoat-x86'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “simplempc_solver”,
placed in the folder “Y2F”) using the Y2F interface.

2. (Figure 13.76) Create a new Simulink model using the blank model template.

3. (Figure 13.77) Populate the Simulink model with the system you want to control.

4. (Figure 13.78) Make sure the simplempc_solver_simulinkBlock.mexw64 file (created
during code generation) is on the Matlab path.

5. (Figure 13.79) Copy-paste the FORCESPRO Simulink block, contained in the created
y2f_simulink_lib.slx Simulink model file, into your simulation model and connect
its inputs and outputs appropriately.

6. (Figure 13.80) Access the Simulink model’s options.

7. (Figure 13.81) In the “Solver” tab, set the options:

• Simulation start/stop time: Depending on the simulation wanted.

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

8. (Figure 13.82) In the “Code Generation/RTI general build options” tab, set the options:

• System target file: slrt.tlc

• Language: C

• Generate makefile: On

• Template makefile: slrt_default_tmf

• Make command: make_rtw

9. (Figure 13.83) In the “Code Generation/Custom Code” tab, include the directories:

• Y2F\simplempc_solver\interface

• Y2F\simplempc_solver\lib_target

10. (Figure 13.84) In the “Code Generation/Custom Code” tab, add the source files:

• simplempc_solver_simulinkBlock.c

• simplempc_solver.c

11. (Figure 13.85) In the “Code Generation/Custom Code” tab, add the library files:

• internal_simplempc_solver_1.lib

12. (Figure 13.86) Compile the code of the Simulink model. This will also automatically load
the model to the connected Speedgoat platform.

13. Deployment is complete and simulations can now be run on the Speedgoat platform.
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14. Run the simulation on the Speedgoat platform.

You can find the Matlab code of this simulation to try it out for yourself in the examples
folder that comes with your client.

Figures

Figure 13.75: Set the appropriate code generation options.

Figure 13.76: Create a Simulink model.
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Figure 13.77: Populate the Simulink model.

Figure 13.78: Add the folder containing the .mexw64 solver file to the Matlab path.

Figure 13.79: Copy-paste and connect the FORCESPRO block.
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Figure 13.80: Open the Simulink model options.

Figure 13.81: Set the Simulink solver options.
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Figure 13.82: Set the Simulink code generation options.

Figure 13.83: Add the directories included for the code generation.
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Figure 13.84: Add the source files used for the code generation.
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Figure 13.85: Add the libraries used for the code generation.

Figure 13.86: Compile the code of the Simulink model.
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13.5 Speedgoat QNX

Important: When deploying to a target hardware platform, the library included in the
lib_target directory of the generated solver should be used instead of the library in the lib
directory.

13.5.1 High-level interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a Speedgoat QNX platform are
detailed below.

1. (Figure 13.87) Set the code generation options:

codeoptions.platform = 'Speedgoat-QNX'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported
codeoptions.cleanup = 0; % to keep necessary files for target compile

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the high-level interface.

2. (Figure 13.88) Create a new Simulink model using the blank model template.

3. (Figure 13.89) Populate the Simulink model with the system you want to control.

4. (Figure 13.90) Make sure the FORCESNLPsolver_simulinkBlock.mexw64 file (created
during code generation) is on the Matlab path.

5. (Figure 13.91) Open the FORCESNLPsolver_lib.mdl Simulink model file, contained in
the interface folder of the FORCESNLPsolver folder created during code generation.

6. (Figure 13.92) Copy-paste the FORCESPRO Simulink block into your simulation model
and connect its inputs and outputs appropriately.

7. (Figure 13.93) Access the Simulink Model’s Settings.

8. (Figure 13.94) In the “Solver” tab, set the options:

• Simulation start/stop time: Depending on the simulation wanted.

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

9. (Figure 13.95) In the “Code Generation” tab, set the options:

• System target file: slrealtime.tlc

• Generate makefile: Off

10. (Figure 13.96) In the “Code Generation/Custom Code” tab, include the directories:

• BasicExample

• BasicExample\FORCESNLPsolver\interface

• BasicExample\FORCESNLPsolver\lib_target

11. (Figure 13.97) In the “Code Generation/Custom Code” tab, add the source files:

• FORCESNLPsolver_simulinkBlock.c

• FORCESNLPsolver_casadi2forces.c

• FORCESNLPsolver_casadi.c
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12. (Figure 13.98) In the “Code Generation/Custom Code” tab, add the library file:

• libFORCESNLPsolver.a

13. (Figure 13.99) Access the FORCESPRO block’s parameters.

14. (Figure 13.100) Remove “FORCESNLPsolver” and “FORCESNLPsolver_simulinkBlock”
from the S-function module.

15. (Figure 13.101) Compile the code of the Simulink model. This will also automatically load
the model to the connected Speedgoat platform.

16. Deployment is complete and simulations can now be run on the Speedgoat platform.

Figures

Figure 13.87: Set the appropriate code generation options.

Figure 13.88: Create a Simulink model.
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Figure 13.89: Populate the Simulink model.

Figure 13.90: Add the folder containing the .mexw64 solver file to the Matlab path.
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Figure 13.91: Open the generated Simulink solver model.

Figure 13.92: Copy-paste and connect the FORCESPRO block.
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Figure 13.93: Open the Simulink Model Settings.

Figure 13.94: Set the Simulink solver options.
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Figure 13.95: Set the Simulink code generation options.

Figure 13.96: Add the directories included for the code generation.
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Figure 13.97: Add the source files used for the code generation.

Figure 13.98: Add the libraries used for the code generation.

Figure 13.99: Open the FORCESPRO block’s parameters.
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Figure 13.100: Remove the default data from the S-function module.

Figure 13.101: Compile the code of the Simulink model.
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13.5.2 Y2F interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a Speedgoat QNX platform are
detailed below.

1. (Figure 13.102) Set the code generation options:

codeoptions.platform = 'Speedgoat-QNX'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “simplempc_solver”,
placed in the folder “Y2F”) using the Y2F interface.

2. (Figure 13.103) Create a new Simulink model using the blank model template.

3. (Figure 13.104) Populate the Simulink model with the system you want to control.

4. (Figure 13.105) Make sure the simplempc_solver_simulinkBlock.mexw64 file (created
during code generation) is on the Matlab path.

5. (Figure 13.106) Copy-paste the FORCESPRO Simulink block, contained in the created
y2f_simulink_lib.slx Simulink model file, into your simulation model and connect
its inputs and outputs appropriately.

6. (Figure 13.107) Access the Simulink Model’s Settings.

7. (Figure 13.108) In the “Solver” tab, set the options:

• Simulation start/stop time: Depending on the simulation wanted.

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

8. (Figure 13.109) In the “Code Generation/RTI general build options” tab, set the options:

• System target file: slrealtime.tlc

• Generate makefile: Off

9. (Figure 13.110) In the “Code Generation/Custom Code” tab, include the directories:

• Y2F

• Y2F\simplempc_solver\interface

• Y2F\simplempc_solver\lib_target

10. (Figure 13.111) In the “Code Generation/Custom Code” tab, add the source files:

• simplempc_solver_simulinkBlock.c

• simplempc_solver.c

11. (Figure 13.112) In the “Code Generation/Custom Code” tab, add the library file:

• libinternal_simplempc_solver_1.a

12. (Figure 13.113) Compile the code of the Simulink model. This will also automatically load
the model to the connected Speedgoat platform.

13. Deployment is complete and simulations can now be run on the Speedgoat platform.

Figures
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Figure 13.102: Set the appropriate code generation options.

Figure 13.103: Create a Simulink model.

Figure 13.104: Populate the Simulink model.
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Figure 13.105: Add the folder containing the .mexw64 solver file to the Matlab path.

Figure 13.106: Copy-paste and connect the FORCESPRO block.
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Figure 13.107: Open the Simulink Model Settings.

Figure 13.108: Set the Simulink solver options.
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Figure 13.109: Set the Simulink code generation options.

Figure 13.110: Add the directories included for the code generation.

Figure 13.111: Add the source files used for the code generation.
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Figure 13.112: Add the libraries used for the code generation.

Figure 13.113: Compile the code of the Simulink model.
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Chapter 14

Licensing

14.1 Machine Identification

The FORCESPRO licensing system works by receiving unique identifiers from the machines
the software runs on and enabling the machines by activating the corresponding unique
identifiers. Activation of machines can be done by receiving the unique identifiers of the
machines using fingerprinting executables provided in the portal and adding those unique
identifiers on the portal.

For more information on machine activation see: https://my.embotech.com/readme

14.1.1 Client Identification

Machines running FORCESPRO clients are licensed using the machine’s username and the
machine’s unique identifier.

14.1.2 Solver Identification

Machines running FORCESPRO solvers are licensed using the machine’s unique identifier.

14.2 Static License

When generating a solver the license’s state on the portal (enabled machines and expiration)
is saved in the solver so that the solver can run on the enabled machines.

14.2.1 System requirements for static license

The requirement for static license checking is to have correct system clock settings (accu-
rately showing current time, compliant to UTC time).

14.2.2 Generating solvers with static license

Static license checking is automatically enabled on a generated solver.
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14.2.3 Running solvers with static license

After generating a solver, you can move it to the running platform and build it with the rest
of your project.

14.3 License Files

License Files are used in order to enable solvers to run in machines that were not enabled
during the time of code generation or to enable solvers to run after a license renewal (that
happened after solver code generation).

14.3.1 System requirements for license files

The requirements for using license files are:

• A platform supporting I/O operations

• A platform with access to file system

• Correct system clock settings (accurately showing current time, compliant to UTC time)

• Using the MATLAB interface of FORCESPRO

14.3.2 Generating solvers with license files

License file checking is automatically enabled on a generated solver (supposing the platform
supports it). The user has the option to select the name of the license file using the following
codeoption:

% Matlab
codeoptions.license_file_name = '<filename_without_extension>'; % no paths, only
→˓filename

Important: The license file name must be a valid variable name

14.3.3 Generating license files

License files can be created by using the MATLAB function ForcesGetLicenseFile. This
function can be called with the following (optional) arguments:

• license file name: Name to be given to created license file (without extension). De-
fault value: FORCES_PRO

• server: FORCESPRO server to use to generate the license file. Default value: default
server used by client

For more information on function usage run: help ForcesGetLicenseFile in the MATLAB
Command Window.
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14.3.4 Running solvers with license files

After generating a solver, you can move it to the running platform and build it with the rest
of your project. After generating a license file, you can move it to your project folder.

When running a solver:

• The solver will read the license file and validate the license

• The license file need to be in the same folder as the executable of your project

14.4 Floating Licenses

Floating Licenses are used when the system that is enabled for running solvers needs to fre-
quently change or is a virtualized environment (such as Docker or Virtualbox). The licensing
works by getting a temporary local lease from the floating license server in order to be able
to run a solver in a machine.

14.4.1 System requirements for floating licenses

The requirements for enabling solvers with floating licenses are:

• A x86/x86_64 Linux platform

• An internet connection on the running platform

• Correct system clock settings (accurately showing current time, compliant to UTC time)

14.4.2 Floating License Attributes

Floating licenses are defined by the following two fields:

• Number of Licenses: The number of machines that can run solvers concurrently using
a floating license for a FORCESPRO user.

• Lease Time: The time for which a local lease is valid after it has been granted. Default
lease time is 10 minutes. Please contact support@embotech.com to change this.

14.4.3 Generating solvers with floating licenses

To enable floating licenses on a generated solver use the following codeoption:

% Matlab
codeoptions.useFloatingLicense = 1;

# Python
codeoptions["useFloatingLicense"] = 1

And select the platform to use

% Matlab
codeoptions.platform = 'platform_name';

# Python
codeoptions["platform"] = "platform_name"

Available platform options are:
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• Gnu-x86

• Gnu-x86_64

• Docker-Gnu-x86

• Docker-Gnu-x86_64

14.4.4 Running solvers with floating licenses

After generating a solver, you can move it to the running platform and build it with the rest
of your project.

When running a solver:

• The solver will communicate with the floating license server

• If the number of enabled machines has not exceeded the license limits, a license lease
will be returned

• If a lease had already been granted for a machine (and is still valid) this will be the one
returned to the solver instead of granting a new one

• The solver will save the lease locally and run

• If a valid local lease already exists the solver will run without communicating with the
server
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Chapter 15

Solver Options

The default solver options can be loaded when giving a name to the solver with the following
command

Matlab

Python

codeoptions = getOptions('solvername');

stages.codeoptions = forcespro.CodeOptions('solvername') # for the low-level
→˓interface
codeoptions = forcespro.CodeOptions('solvername') # for the high-level interface

In the documentation below, we assume that you have created this struct and named it
codeoptions.

Note: For the low-level interface in Python, the codeoptions struct has to be an element of
the stages struct.

15.1 General options

We will first discuss how to change several options that are valid for all the FORCESPRO in-
terfaces.

15.1.1 Solver name

The name of the solver will be used to name variables, functions, but also the MEX file and
associated help file. This helps you to use multiple solvers generated by FORCESPRO within
the same software project or Simulink model. To set the name of the solver use:

Matlab

Python

codeoptions.name = 'solvername';

codeoptions.name = 'solvername'
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Alternatively, you can directly name the solver when generating the options struct by calling:

Matlab

Python

codeoptions = getOptions('solvername');

stages.codeoptions = forcespro.CodeOptions('solvername') # for the low-level
→˓interface
codeoptions = forcespro.CodeOptions('solvername') # for the high-level interface

15.1.2 Print level

To control the amount of information the generated solver prints to the console, set the field
printlevel as outlined in Table 15.1.

Table 15.1: Print level options
printlevel Result Dependency
0 No output will be written. (None)
1 Summary line after each solve. <stdio.h>
2 (default) Summary after each iteration of solver. <stdio.h>

Note: For printlevel=0, the generated solver has no dependency on any system library.
Otherwise, there will be a dependency on <stdio.h>.

Important: printlevel should always be set to 0 when recording performance timings or
when deploying the code on an autonomous embedded system.

15.1.3 Maximum number of iterations

To set the maximum number of iterations of the generated solver, use:

Matlab

Python

codeoptions.maxit = 200;

codeoptions.maxit = 200

The default maximum number of iterations for all solvers provided by FORCESPRO is set to
200.

15.1.4 Compiler optimization level

The compiler optimization level can be varied by changing the field optlevel from 0 to 3
(default):

Matlab

Python
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codeoptions.optlevel = 0;

codeoptions.optlevel = 0

Important: It is recommended to set optlevel to 0 during prototyping to evaluate the func-
tionality of the solver without long compilation times. Then set it back to 3 when generating
code for deployment or timing measurements.

15.1.5 Measure Computation time

You can measure the time used for executing the generated code by using:

Matlab

Python

codeoptions.timing = 1;

codeoptions.timing = 1

By default the execution time is measured. The execution time can be accessed in the field
solvetime of the information structure returned by the solver. In addition, the execution
time is printed in the console if the flag printlevel is greater than 0.

Important: Setting timing on will introduce a dependency on libraries used for accessing
the system clock. Timing should be turned off when deploying the code on an autonomous
embedded system.

By default when choosing to generate solvers for target platforms, timing is disabled. You
can manually enable timing on embedded platforms by using:

Matlab

Python

codeoptions.embedded_timing = 1;

codeoptions.embedded_timing = 1

15.1.6 Solver Timeout

Introduction

If you have a critical application which needs to run in a specific timeframe then it’s useful to
set a timeout for the solver in order to control its execution time.

The timeout works by checking the execution time of each iteration of the solver and making
an estimate for next iterations as:

next_iteration_time = timeout_estimate_coeff * max_iteration_time

where:

• max_iteration_time is the execution time of the currently slowest iteration
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• timeout_estimate_coeff is a coefficient used to make the estimate more conservative
or forgiving. Its default value is 1.20

Usage

To enable the solver timeout you can use the following codeoption:

Matlab

Python

% solver_timeout can take values 0-2
codeoptions.solver_timeout = 1;

# solver_timeout can take values 0-2
codeoptions.solver_timeout = 1

Setting the option to 1 will enable the timeout and provide the floating point variable
solver_timeout as a runtime parameter. Setting the option to 2 will additionally provide
the floating point variable timeout_estimate_coeff as a runtime parameter.

Important: For MINLP solvers a timeout is automatically enabled therefore there’s no
need to use the above codeoptions. For more details on how to use it please check section
Mixed-integer nonlinear solver.

Not setting the runtime parameters after enabling them with code generation will result in
them taking their default values. The default values for the runtime parameters are:

• For solver_timeout it’s -1.0 which results in timeout being disabled

• For timeout_estimate_coeff it’s 1.20

Important: Since an estimation is required for the timeout, the solvers will always perform
the first iteration (only exception are SQP methods, check the following section SQP inner
QP timeout).

SQP inner QP timeout

With the SQP_NLP solve method the QP solved as part of the SQP iteration is also set to
timeout based on the remaining time available to the SQP solver. The QP timeout can be
useful in cases where the inner QP takes longer time to execute than expected and could
otherwise cause the SQP solver to miss the timeout mark (in which case the SQP solver would
time out at the start of the next iteration). If the QP times out, the SQP solver will return with
the solution from the previous iteration.

If it is deemed more important to solve the whole QP and get a more updated solution rather
than having a strict timeout, the inner qp timeout can be disabled with the following codeop-
tion:

Matlab

Python

% this option is relevant only if codeoptions.solver_timeout is enabled
codeoptions.sqp_nlp.qp_timeout = 0;
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# this option is relevant only if codeoptions.solver_timeout is enabled
codeoptions.sqp_nlp.qp_timeout = 0

Return Value

When solver timeout is enabled, two additional exitflags are available for the user:

Table 15.2: Timeout exitflags
Exitflag Name Value Description
TIMEOUT_<SOLVERNAME> 2 The solver timed out and returned

the solution found up to the exe-
cuted iteration

INVALID_<TIMEOUT_SOLVERNAME> -12 The timeout provided was too
small to even start a single itera-
tion

If a normal timeout is returned, the outputs of the solver will contain the solution found up to
the executed iteration. If an invalid timeout is returned, the outputs of the solver will contain
the initialization of the solver (or the previous solution if it exists for SQPs).

15.1.7 Running multiple instances of the same solver

Multiple instances of the generated solver can be run in a multi-threaded environment by
making use of the expert C interface. The expert interface gives the user control over the
allocation of the required memory so that a different block of memory can be pre-allocated
for each thread. This feature is currently implemented for the algorithms PDIP and PDIP_NLP.

The thread-safe expert interface can be requested by setting the option

Matlab

Python

codeoptions.threadSafeExpert = 1;

codeoptions.threadSafeExpert = 1

and consists of two additional C functions:

• <solvername>_solver_mem <solvername>_mem_new()provides a handle to the mem-
ory to be used by a solver.

• <solvername>_solve_expert(..., <solvername>_solver_mem * mem, ...) is the
solver function (instead of <solvername>_solve(...)) taking the memory handle as
an additional input argument.

In order to ensure thread-safety, each thread must be assigned its own memory handle.

Below an example of how to run multiple solvers in parallel using OpenMP:

// prepare 4 solvers
#define nSolvers = 4
FORCES_NLP_solver_mem mem[nSolvers];
FORCES_NLP_solver_params params[nSolvers];
FORCES_NLP_solver_output output[nSolvers];
FORCES_NLP_solver_info info[nSolvers];
// ... initialize params ...

(continues on next page)
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(continued from previous page)

// initialize memory for each thread
int nThreads = omp_get_num_threads();
int iThread;
for (iThread=0; iThread<nThreads; iThread++)
{

mem[iThread] = FORCES_NLP_solver_mem_new();
}

// run the solvers in parallel
int exitflag;
#pragma omp parallel for
for (iSolver=0; iSolver<nSolvers; iSolver++)
{

int iThread = omp_get_thread_num();
exitflag = FORCES_NLP_solver_solve_expert(&params[iSolver], &output[iSolver], &

→˓info[iSolver], &mem[iThread], ...);
}

You can find the full code of this example including instructions of how to run it in the
Examples\ThreadSafe folder that comes with your client.

Alternatively (and for the algorithms not yet supported with threadSafeExpert = 1), use
the option threadSafeStorage = 1. This ensures thread-safety within the default inter-
face by relying on thread-local storage. Due to the limited amount of thread-local stor-
age (depending on the system), using threadSafeExpert is recommended over using
threadSafeStorage and threadSafeStorage will be deprecated in the near future.

Important: When using the code-generated integrators (see section Code-generated inte-
grators) with the threadSafeExpert option enabled, you will have to specify via the option
nlp.max_num_threads the maximum number of threads on which you wish to run the solver
in parallel. For instance, if running the solver on a maximum of 5 threads in parallel one would
set

Matlab

Python

codeoptions.nlp.max_num_threads = 5;

codeoptions.nlp.max_num_threads = 5

Important: The deployment of a Simulink model to a target platform is not supported when
the threadSafeExpert option is enabled. To deploy a Simulink model, the threadSafeExpert
option must be unset or disabled.

15.1.8 Datatypes

The type of variables can be changed by setting the field floattype as outlined in Table 15.3.
This will effect all floating point variables used inside the solver and the callbacks generated
by the AD tool.
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Table 15.3: Data type options
floattype Decimation Width (bits) Supported algorithms
'double' (default) 64 bit Floating point PDIP_NLP, SQP_NLP, PDIP, ADMM, DFG, FG
'float' 32 bit Floating point PDIP, ADMM, DFG, FG
'int' 32 bit Fixed point ADMM, DFG, FG
'short' 16 bit Fixed point ADMM, DFG, FG

Important: Unless running on a resource-constrained platform, we recommend using dou-
ble precision floating point arithmetic to avoid problems in the solver. If single precision float-
ing point has to be used, reduce the required tolerances on the solver accordingly by a power
of two (i.e. from 1E-6 to 1E-3).

When running the solver in double precision arithmetic, it is possible to only use single pre-
cision arithmetic for evaluating the AD tool callbacks. This can be done by setting the field
callback_floattype; see Table 15.4 and section Single precision callbacks for details.

Table 15.4: Callback data type options
floattype Decimation Width (bits) Supported algorithms
'double' (default) 64 bit Floating point PDIP_NLP, SQP_NLP
'float' 32 bit Floating point PDIP_NLP, SQP_NLP

15.1.9 Code generation server

By default, code generation requests are routed to embotech’s server. To send a code gener-
ation request to a local server, for example when FORCESPRO is used in an enterprise setting,
set the following field to an appropriate value:

Matlab

Python

codeoptions.server = 'https://yourforcesserver.com:1234';

codeoptions.server = 'https://yourforcesserver.com:1234'

15.1.10 Enforcing solver regeneration

In order to avoid unnecessary calls to the code-generation server, FORCESPRO internally
computes a hash of your problem formulation and codeoptions. If this hash is identical to
that of an already generated solver, the existing one is reused. In situations where this is not
desired, hashing can be disabled as follows:

Matlab

Python

codeoptions.nohash = 1;

codeoptions.nohash = 1

In that case, the codegen server is always contacted to re-generate a new solver.
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15.1.11 Overwriting existing solvers

When a new solver is generated with the same name as an existing solver one can control
the overwriting behaviour by setting the field overwrite as outlined in Table 15.5.

Table 15.5: Overwrite existing solver options
overwrite Result
0 Never overwrite.
1 Always overwrite.
2 (default) Ask to overwrite.

15.1.12 Skipping the Build of Simulink S-function

By default, after code generation, the Simulink block is compiled, which may take a very long
time for large problems on Windows systems. If you will not use the Simulink block, or want
to build it later yourself, you can disable automatic builds by using the following option:

Matlab

Python

codeoptions.BuildSimulinkBlock = 0;

# does not take effect in Python

15.1.13 Solver info in Simulink block

FORCESPRO always generates a Simulink block encapsulating the generated solver. You can
add output ports to the Simulink block to obtain the solver exit flag and other solver informa-
tion (number of iterations, solve time in seconds, value of the objective function) by setting:

Matlab

Python

codeoptions.showinfo = 1;

codeoptions.showinfo = 1

By default these ports are not present in the Simulink block.

15.1.14 Skipping automatic cleanup

FORCESPRO automatically cleans up some of the files that it generates during the code gen-
eration, but which are usually not needed any more after building the MEX file. In particu-
lar, some intermediate CasADi generated files are deleted. If you would like to prevent any
cleanup by FORCES, set the option:

Matlab

Python

codeoptions.cleanup = 0;

codeoptions.cleanup = 0
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The default value is 1 (true).

Important: The library or object files generated by FORCESPRO contain only the solver itself.
To retain the CasADi generated files for function evaluations, switch off automatic cleanup as
shown above. This is needed if you want to use the solver within another software project,
and need to link to it.

15.1.15 MATLAB network communications

From version 5.0.0, the MATLAB client will perform connections to a REST interface for com-
municating with the FORCESPRO codegen server.

To revert to an old method, either set:

% WSDL connection
codeoptions.server_connection = ForcesWeb.ServerConnections.WSDL;
% WSDL legacy connection
codeoptions.server_connection = ForcesWeb.ServerConnections.WSDL_legacy;

or change it by editing the FORCESPRO client. To do so, please edit the +ForcesWeb/
defaultServerConnection.m function so that it returns the selected ForcesWeb.
ServerConnections value.

Important: Setting the codeoptions.server_connection option will override the value in
+ForcesWeb/defaultServerConnection.m

15.1.16 Python network communications

From version 5.0.0, the Python client will perform connections to a REST interface for com-
municating with the FORCESPRO codegen server.

To revert to the old method, either set:

# WSDL connection
codeoptions.server_connection = WSDL

or change it by editing the FORCESPRO client. To do so, please edit the
default_forcespro_connection.py function so that it returns the selected
server_connections value.

Important: Setting the codeoptions.server_connection option will override the value in
default_forcespro_connection.py

From version 4.3.1, the Python client supports connections to the FORCESPRO codegen
server through a proxy.

The file forcespro_proxy.py exists in the FORCESPRO client folder in order to set the con-
figuration for the proxy. The format of the file is as follows:

# host of the proxy. Can be an IP address ("x.x.x.x") or a DNS record. Set to
→˓empty to not use a proxy
host=""
# port number of proxy to connect to. To use default set to 0
port=8888

(continues on next page)
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# Protocol to connect to the proxy (http or https). To use default set to empty
protocol="http"
# Username with which to connect to the proxy. To not use a username set to empty
username="user"
# Password with which to connect to the proxy. To not use a password set to empty
password="pass"

Note: By default the file forcespro_proxy.py has an empty host entry so that no proxy is
used unless set.

15.1.17 Target platform

As a default option, FORCESPRO generates code for simulation on the host platform. To ob-
tain code for deployment on a target embedded platform, set the field platform to the ap-
propriate value. The platforms currently supported by FORCESPRO are given in Table 15.6. In
order to acquire licenses to use a specific platform, licenses can be requested on the portal
by selecting the platform naming stated in the Portal Selection.

Table 15.6: Target platforms supported by FORCESPRO
platform Description Portal Selection
'Generic' (default) For the architecture of the

host platform.
'x86_64' (Engineering
Node)

'x86_64' For x86_64 based 64-bit
platforms (detected OS).

'x86_64'

'x86' For x86 based 32-bit plat-
forms (detected OS).

'x86'

'Win-x86_64' For Windows x86_64 based
64-bit platforms (supports
Microsoft/Intel compiler).

'x86_64'

'Win-x86' For Windows x86 based 32-
bit platforms (supports Mi-
crosoft/Intel compiler).

'x86'

'Win-MinGW-x86_64' For Windows x86_64 based
64-bit platforms (supports
MinGW compiler).

'x86_64'

'Win-MinGW-x86' For Windows x86 based
32-bit platforms (supports
MinGW compiler).

'x86'

'Mac-x86_64' For Mac x86_64 based
64-bit platforms (supports
GCC/Clang compiler).

'x86_64'

'Gnu-x86_64' For Linux x86_64 based 64-
bit platforms (supports GCC
compiler).

'x86_64'

'Gnu-x86' For Linux x86 based 32-bit
platforms (supports GCC
compiler).

'x86'

'Docker-Gnu-x86_64' For Linux x86_64 based
64-bit platforms on Docker
(supports GCC compiler).

'Docker-Gnu-x86_64'

Continued on next page
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Table 15.6 – continued from previous page
platform Description Portal Selection
'Docker-Gnu-x86' For Linux x86 based 32-bit

platforms on Docker (sup-
ports GCC compiler).

'Docker-Gnu-x86'

'ARM-Generic' For ARM Cortex 32-bit pro-
cessors (Gnueabih machine
type).

'ARM-Generic-Gnu'

'ARM-Generic64' For ARM Cortex 64-bit pro-
cessors (Aarch machine
type).

'ARM-Generic64-Gnu'

'Integrity-ARM32' For ARM Cortex 32-bit pro-
cessors using the Integrity
toolchain.

'Integrity-ARM32'

'Integrity-ARM64' For ARM Cortex 64-bit pro-
cessors using the Integrity
toolchain.

'Integrity-ARM64'

'ARM Cortex-M3' For ARM Cortex M3 32-bit
processors.

'ARM-Cortex-M3'

'ARM-Cortex-M4-NOFPU' For the ARM Cortex M4
32-bit processors without a
floating-point unit.

'ARM-Cortex-M4'

'ARM-Cortex-M4' For the ARM Cortex M4
32-bit processors with a
floating-point unit.

'ARM-Cortex-M4'

'ARM-Cortex-A7' For the ARM Cortex A7 32-bit
processors (Gnueabih ma-
chine type).

'ARM-Cortex-A7'

'ARM-Cortex-A8' For the ARM Cortex A8
32-bit processors (Gnueabih
machine type).

'ARM-Cortex-A8'

'ARM-Cortex-A9' For the ARM Cortex A9
32-bit processors (Gnueabih
machine type).

'ARM-Cortex-A9'

'ARM-Cortex-A15' For the ARM Cortex A15
32-bit processors (Gnueabih
machine type).

'ARM-Cortex-A15'

'ARM-Cortex-A53' For the ARM Cortex A53
64-bit processors (Gnueabih
machine type).

'ARM-Cortex-A53'

'ARM-Cortex-A72' For the ARM Cortex A72
64-bit processors (Gnueabih
machine type).

'ARM-Cortex-A72'

'TI-Cortex-A15' For the ARM Cortex A15
32-bit processors (Gnueabih
machine type).

'TI-Cortex-A15'

'NVIDIA-Cortex-A57' For the NVIDIA Cortex A57
64-bit processors (Aarch
machine type).

'NVIDIA-Cortex-A57'

'AARCH-Cortex-A57' For the ARM Cortex A57 64-
bit processors (Aarch ma-
chine type).

'AARCH-Cortex-A57'

'AARCH-Cortex-A72' For the ARM Cortex A72 64-
bit processors (Aarch ma-
chine type).

'AARCH-Cortex-A72'

Continued on next page
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Table 15.6 – continued from previous page
platform Description Portal Selection
'PowerPC' For 32-bit PowerPC based

platforms (supports GCC
compiler).

'PowerPC-Gnu'

'PowerPC64' For 64-bit PowerPC based
platforms (supports GCC
compiler).

'PowerPC64-Gnu'

'MinGW32' For Windows x86 based
32-bit platforms (supports
MinGW compiler).

'x86'

'MinGW64' For Windows x86_64 based
64-bit platforms (supports
MinGW compiler).

'x86_64'

'dSPACE-MABII' For the dSPACE MicroAuto-
Box II real-time system (sup-
ports Microtec compiler).

'dSPACE-MABII-Microtec'

'dSPACE-MABIII' For the dSPACE MicroAu-
toBox III real-time system
(supports Gcc compiler).

'dSPACE-MABIII-Gcc'

'dSPACE-MABXII' For the dSPACE MicroAuto-
Box II real-time system (sup-
ports Microtec compiler).

'dSPACE-MABII-Microtec'

'dSPACE-MABXIII' For the dSPACE MicroAu-
toBox III real-time system
(supports Gcc compiler).

'dSPACE-MABIII-Gcc'

'dSPACE-AutoBox' For the dSPACE AutoBox
real-time system (supports
Gcc compiler).

'dSPACE-AutoBox-Gcc'

'Speedgoat-x86' For Speedgoat 32-bit real-
time platforms (supports
Microsoft compiler and
mainly MATLAB Releases
2018b up to R2020a).

'Speedgoat-x86'

'Speedgoat-x64' For Speedgoat 64-bit real-
time platforms (supports
Microsoft compiler and
mainly MATLAB Releases
2018b up to R2020a).

'Speedgoat-x64'

'Speedgoat-QNX' For Speedgoat 64-bit real-
time platforms (supports
MATLAB Releases 2020b
onwards).

'Speedgoat-QNX'

'Speedgoat-Legacy-x86' For Speedgoat Mobile 32-bit
real-time platforms (sup-
ports Microsoft compiler
and Matlab Releases 2018a
and earlier).

'Speedgoat-x86'

'NI-cRIO' For National Instruments
compactRIO Linux RTOS
platforms (supports NILRT
Gcc compiler).

'NI-cRIO'

'IAtomE680_Bachmann' For Bachmann PLC plat-
forms (supports VxWorks
compiler).

'IAtomE680-VxWorks'

318 Chapter 15. Solver Options



FORCESPRO User Manual

Note: If a solver for another platform is requested, FORCESPRO will still provide the simula-
tion interfaces for the 'Generic' host platform to enable users to run simulations.

Cross compilation

To generate code for other operating systems different from the host platform, set the appro-
priate flag from the following list to 1:

codeoptions.win
codeoptions.mac
codeoptions.gnu

Note that this will only affect the target platform. Interfaces for the host platform will be
automatically built.

Mac compilation

When compiling for mac platforms it’s possible to select the compiler to be used for the
web compilation. Select from the available values gcc (default) and clang with the follow-
ing codeoption:

Matlab

Python

codeoptions.maccompiler = 'gcc'; % or 'clang'

codeoptions.maccompiler = 'gcc' # or 'clang'

SIMD instructions

On x86-based host platforms, one can enable the sse field to accelerate the execution of the
solver

Matlab

Python

codeoptions.sse = 1;

codeoptions.sse = 1

On x86-based host platforms, one can also add the avx field to significantly accelerate the
compilation and execution of the convex solver, from version 1.9.0,

Matlab

Python

codeoptions.avx = 1;

codeoptions.avx = 1
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Note: Currently when options avx and blckMatrices are enabled simultaneously,
blckMatrices is automatically disabled.

Note: When sparse parameters are present in the model, the options avx and neon are
automatically set to zero.

Depending on the host platform, avxmay be automatically enabled. If the machine on which
the solver is to be run does not support AVX and the message “Illegal Instruction” is returned
at run-time, one can explicitly disable avx by setting:

Matlab

Python

codeoptions.avx = -1;

codeoptions.avx = -1

If the host platform supports AVX, but the user prefers not to have AVX intrinsics in the gen-
erated code, one can also keep the default option value of the solver:

Matlab

Python

codeoptions.avx = 0;

codeoptions.avx = 0

On ‘NVIDIA-Cortex-A57’, ‘AARCH-Cortex-A57’ and ‘AARCH-Cortex-A72’ target platforms, one
can also enable the field neon in order to accelerate the execution of the convex solver. From
version 1.9.0, the typical behaviour is that the host platform gets vectorized code based on
AVX intrinsics when avx = 1, and the target platform gets AVX vectorized code if it supports
it when avx = 1 and NEON vectorized code if it is one of the above Cortex platforms and neon
= 1.

For single precision, the options are

Matlab

Python

codeoptions.floattype = 'float';
codeoptions.neon = 1;

codeoptions.floattype = 'float'
codeoptions.neon = 1

For double precision, the options are

Matlab

Python

codeoptions.floattype = 'double';
codeoptions.neon = 2;

codeoptions.floattype = 'double'
codeoptions.neon = 2
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In case one wants to disable NEON intrinsics in the generated target code, the default value
of the neon option is

Matlab

Python

codeoptions.neon = 0;

codeoptions.neon = 0

If NEON vectorization is being used and there is a mismatch between float precision and the
value of the neon option, the solver is automatically generated with the following options:

Matlab

Python

codeoptions.floattype = 'double';
codeoptions.neon = 2;

codeoptions.floattype = 'double'
codeoptions.neon = 2

and a warning message is raised by the MATLAB client.

Note: From version 1.9.0, ARMv8-A NEON instructions are generated. Hence, target plat-
forms based on ARMv7 and previous versions are currently not supported.

15.1.18 Tips for solving QPs in single precision

Solving QPs in single precision can be rather challenging, i.e. non-converging solves are likely
to occur due to the lack of accuracy. In order to mitigate this undesirable behaviour, several
options can be tuned to make convergence more robust. They are shown and commented
in the code snippet below.

Matlab

Python

codeoptions.floattype = 'float';

codeoptions.regularize.epsilon = 1e-5; % Tolerance on pivot in factorization
codeoptions.regularize.delta = 5e-3; % On-the-fly regularization coefficient in
→˓factorization
codeoptions.regularize.epsilon2 = 1e-5; % Tolerance on pivot in factorization
codeoptions.regularize.delta2 = 5e-3; % On-the-fly regularization coefficient in
→˓factorization

codeoptions.accuracy.ineq = 1e-4; % infinity norm of residual for
→˓inequalities
codeoptions.accuracy.eq = 1e-4; % infinity norm of residual for equalities
codeoptions.accuracy.mu = 1e-6; % absolute duality gap
codeoptions.accuracy.rdgap = 1e-4; % relative duality gap := (pobj-dobj)/pobj

codeoptions.init = 1;

codeoptions.floattype = 'float'

(continues on next page)
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(continued from previous page)

codeoptions.regularize.epsilon = 1e-5 # Tolerance on pivot in factorization
codeoptions.regularize.delta = 5e-3 # On-the-fly regularization coefficient in
→˓factorization
codeoptions.regularize.epsilon2 = 1e-5 # Tolerance on pivot in factorization
codeoptions.regularize.delta2 = 5e-3 # On-the-fly regularization coefficient in
→˓factorization

codeoptions.accuracy.ineq = 1e-4 # infinity norm of residual for inequalities
codeoptions.accuracy.eq = 1e-4 # infinity norm of residual for equalities
codeoptions.accuracy.mu = 1e-6 # absolute duality gap
codeoptions.accuracy.rdgap = 1e-4 # relative duality gap := (pobj-dobj)/pobj

codeoptions.init = 1;

In general, the rationale behind this tuning is to make the tolerances looser and increase the
regularization in the linear algebra. Note that these tips are only applicable to QP solvers.
Solving NLPs in single precision is even more challenging and we currently do not offer a set
of options to robustify convergence on this type of problems.

15.1.19 MISRA 2012 compliance

If your license allows it, add the following field to generate C code that is compliant with the
MISRA 2012 rules:

Matlab

Python

codeoptions.misra2012_check = 1;

codeoptions.misra2012_check = 1

This option makes the generated solver code MISRA compliant. After compilation, the client
also downloads a folder whose name terminates with _misra2012_analysis. The folder con-
tains one summary of all MISRA violations for the solver source and header files. Note that the
option only produces MISRA compliant code when used with algorithms PDIP and PDIP_NLP.

15.1.20 Optimizing code size

The size of the solver libraries generated with code option PDIP_NLP can be reduced by means
of the option nlp.compact_code. By setting

Matlab

Python

codeoptions.nlp.compact_code = 1;

codeoptions.nlp.compact_code = 1

the user enables the FORCESPRO server to generate smaller code, which results in shorter
compilation time and slightly better solve time in some cases. This feature is especially effec-
tive on long horizon problems.

Note: The compact_code option is currently only supported when using the linear systems
solver codeoptions.nlp.linear_solver = 'normal_eqs' (which is the default choice).
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The size of sparse linear algebra routines in the generated code can be reduced by changing
the option compactSparse from 0 to 1:

Matlab

Python

codeoptions.compactSparse = 1;

codeoptions.compactSparse = 1

15.1.21 Optimizing Linear Algebra Operations

Some linear algebra routines in the generated code have available optimizations that can be
enabled by changing the options optimize_<optimization> from 0 to 1. These optimiza-
tions change the code in order to make better use of some embedded architectures in which
hardware is more limited compared to host PC architectures. Therefore, these optimizations
show better results in embedded platforms such as ARM targets rather than during simula-
tions on host PCs. The available optimizations are:

• Cholesky Division: This option performs the divisions included in the Cholesky factor-
ization more efficiently to reduce its computation time.

• Registers: This option attempts to use the architecture’s registers in order to reduce
memory operations which can take significant time.

• Use Locals: These options (which are separated into simple/heavy/all in ascending
complexity) make better use of data locality in order to reduce memory jumps

• Operations Rearrange: This option rearranges operations in order to make more effi-
cient use of data and reduce memory jumps

• Loop Unrolling: This option unrolls some of the included loops in order to remove their
overhead.

• Enable Offset: This option allows the rest of the optimizations to take place in cases
where the matrix contains offsets.

Matlab

Python

codeoptions.optimize_choleskydivision = 1;
codeoptions.optimize_registers = 1;
codeoptions.optimize_uselocalsall = 1;
codeoptions.optimize_uselocalsheavy = 1; % overriden if uselocalsall is enabled
codeoptions.optimize_uselocalssimple = 1; % overriden if uselocalsheavy is enabled
codeoptions.optimize_operationsrearrange = 1;
codeoptions.optimize_loopunrolling = 1;
codeoptions.optimize_enableoffset = 1;

codeoptions.optimize_choleskydivision = 1
codeoptions.optimize_registers = 1
codeoptions.optimize_uselocalsall = 1
codeoptions.optimize_uselocalsheavy = 1 # overriden if uselocalsall is enabled
codeoptions.optimize_uselocalssimple = 1 # overriden if uselocalsheavy is enabled
codeoptions.optimize_operationsrearrange = 1
codeoptions.optimize_loopunrolling = 1
codeoptions.optimize_enableoffset = 1
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15.1.22 Dump problem formulation and data

The MATLAB client of FORCESPRO provides a built-in tool to dump the problem formulation
to reproduce the exact same solver for future reference. This tool is explained in detail in
Section 17 and can be turned on by using the setting:

codeoptions.dump_formulation = 1;

Furthermore, you can dump problem structs containing the runtime parameters from C as
described in Section 17. This tool is enabled for the host or/and the target platform by setting:

Matlab

Python

codeoptions.serializeCParamsHost = 1;
codeoptions.serializeCParamsTarget = 1;

codeoptions.serializeCParamsHost = 1
codeoptions.serializeCParamsTarget = 1

15.2 High-level interface options

The FORCESPRO NLP solver of the high-level interface implements a nonlinear barrier
interior-point method. We will now discuss how to change several parameters in the solver.

15.2.1 Integrators

When providing the continuous dynamics the user must select a particular integrator by set-
ting nlp.integrator.type as outlined in Table 15.7.

Table 15.7: Integrators options
nlp.integrator.type Type Order
'ForwardEuler' Explicit Euler Method 1
'ERK2' Explicit Runge-Kutta 2
'ERK3' Explicit Runge-Kutta 3
'ERK4' (default) Explicit Runge-Kutta 4
'BackwardEuler' Implicit Euler Method 1
'IRK2' Implicit Runge-Kutta 2
'IRK4' Implicit Runge-Kutta 4

The user must also provide the discretization interval (in seconds) and the number of inter-
mediate shooting nodes per interval. For instance:

Matlab

Python

codeoptions.nlp.integrator.type = 'ERK2';
codeoptions.nlp.integrator.Ts = 0.01;
codeoptions.nlp.integrator.nodes = 10;

codeoptions.nlp.integrator.type = 'ERK2'
codeoptions.nlp.integrator.Ts = 0.01
codeoptions.nlp.integrator.nodes = 10
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Tip: Usually an explicit integrator such as RK4 should suffice for most applications. If you
have stiff systems, or suspect inaccurate integration to be the cause of convergence failure of
the NLP solver, consider using implicit integrators from the table above.

Note: Note that the implicit integrators BackwardEuler, IRK2 and IRK4 currently rely on the
CasADi AD tool to work.

Expert options for implicit integrators

The implicit integrators BackwardEuler, IRK2 and IRK4 do not just evaluate the differential
equation, but actually solve a nonlinear equation to obtain the state trajectory. This is done
by means of Newton iterations, with default values of 10 iterations for BackwardEuler and 5
iterations for IRK2 and IRK4. These default values can be overwritten by using the following
option:

Matlab

Python

codeoptions.nlp.integrator.newtonIter = 3;

codeoptions.nlp.integrator.newtonIter = 3

In order to reduce computational effort, the Jacobian of the nonlinear equation is only com-
puted once by default. If your differential equations are highly nonlinear, it may be worth the
effort to recompute it at every Newton iteration. This is achieved by means of the following
option:

Matlab

Python

codeoptions.nlp.integrator.reuseNewtonJacobian = 0;

codeoptions.nlp.integrator.reuseNewtonJacobian = 0

Code-generated integrators

From FORCESPRO 4.1.0, integrators generated on the server are available when using ex-
plicit integrators ForwardEuler, RK2, RK3 and RK4, and the field continuous_dynamics is set
in the model structure. From FORCESPRO 4.4.0 the implicit integration scheme IRK2 was
added to the list of supported codegenerated integration schemes. These integrators result
in much smaller code size than previously. They also often result in faster run times on em-
bedded targets.

Two different methods are used to compute sensitivities associated to these integrators:

• chainrule, which is the default option, can also be triggered by setting

Matlab

Python

codeoptions.nlp.integrator.differentiation_method = 'chainrule';
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codeoptions.nlp.integrator.differentiation_method = 'chainrule'

• vde, which can be triggered by settings the following option:

Matlab

Python

codeoptions.nlp.integrator.differentiation_method = 'vde';

codeoptions.nlp.integrator.differentiation_method = 'vde'

When using the vde option, the following options also need to be set

Matlab

Python

codeoptions.nlp.sensitivity.Ts = codeoptions.nlp.integrator.Ts;
codeoptions.nlp.sensitivity.nodes = codeoptions.nlp.integrator.nodes / 2;

% When using 'ERK2' or 'ERK4' for the sensitivity computation, the number of
→˓nodes for the sensitivity

% needs to be twice the number of nodes for the integrator
codeoptions.nlp.sensitivity.type = 'ERK4'; % Can also be 'ForwardEuler', 'RK2'
→˓depending on the application

codeoptions.nlp.sensitivity.Ts = codeoptions.nlp.integrator.Ts
codeoptions.nlp.sensitivity.nodes = codeoptions.nlp.integrator.nodes / 2

# When using 'ERK2' or 'ERK4' for the sensitivity computation, the number of
→˓nodes for the sensitivity

# needs to be twice the number of nodes for the integrator
codeoptions.nlp.sensitivity.type = 'ERK4' # Can also be 'ForwardEuler', 'RK2'
→˓depending on the application

The vde option is likely to change the numerical behaviour of the solver but can help for
reducing the solve time in some cases, typically by having a looser integration on sensitivity.

Note: The vde option currently is still in an experimental state and we are working to fully
robustify it. You may give it a try, but be prepared for unexpected behaviour. Also, the RK3
integration method is currently not supported with the vde option.

Linear subsystem exploitation

Often nonlinear optimal control problems contain linear subsystems, meaning part of the
differential equation describing the dynamics of the system is linear while another part is non-
linear. By this we mean that the state 𝑥 of the system can be split into two parts 𝑥 = (𝑥1, 𝑥2)
such that the differential equation 𝑥̇ = 𝑐(𝑥, 𝑢) (𝑢 denoting the control input) governing the
dynamics of the system can be written as

𝑥̇1 = 𝐴1𝑥1 +𝐵1𝑢 (15.1)
𝑥̇2 = 𝑐2(𝑥1, 𝑥2, 𝑢). (15.2)

Here 𝐴1 and 𝐵1 denote constant matrices and 𝑐2 denotes a non-linear function. Since
FORCESPRO 4.4.0 it is possible to exploit such subsystems for performance by per-
forming parts of the numerical integration of the system offline. Currently this is sup-
ported only for the codegenerated ERK4 integration scheme (see Code-generated integra-
tors). FORCESPRO can automatically detect a linear subsystem if it exists. One can ac-
tivate the detection of linear subsystems by enabling the codeoptions.nlp.integrator.
attempt_subsystem_exploitation option as follows:
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Matlab

Python

codeoptions.nlp.integrator.attempt_subsystem_exploitation = 1;

codeoptions.nlp.integrator.attempt_subsystem_exploitation = 1

Optionally, in combination with setting this option, one can also specify the state indices of
the linear subsystem manually. These indices are specified as a numpy array of integers in
Python and a vector of indices in Matlab via the field model.linInIdx. For example, in a case
when 𝑥 ∈ R2, 𝑢 ∈ R and the right-hand-side 𝑐 of the ODE describing the dynamics of the
system is given by

𝑐(𝑥, 𝑢) =

⎛⎝ 𝑥2
𝑥1

cos(𝑥1) + sin(𝑥2) + 𝑥3 + 𝑢

⎞⎠ ,

one would have to specify

Matlab

Python

model.linInIdx = [1, 2];

model.linInIdx = np.array([0, 1], dtype=np.int)

Note the 1-based indexing in Matlab and the 0-based indexing in Python. For further de-
tails on how to exploit linear subsystems using FORCESPRO, see Controlling a crane using a
FORCESPRO NLP solver.

Note: For large systems (more than about 16 states) there might be a considerable overhead
in determining the indices of the linear subsystem automatically. In case you encounter such
an overhead, you can avoid it by manually specifying model.linInIdx as shown above.

15.2.2 Accuracy requirements

One can modify the termination criteria by altering the KKT tolerance with respect to sta-
tionarity, equality constraints, inequality constraints and complementarity conditions, respec-
tively, using the following fields:

Matlab

Python

% default tolerances
codeoptions.nlp.TolStat = 1e-5; % inf norm tol. on stationarity
codeoptions.nlp.TolEq = 1e-6; % tol. on equality constraints
codeoptions.nlp.TolIneq = 1e-6; % tol. on inequality constraints
codeoptions.nlp.TolComp = 1e-6; % tol. on complementarity

# default tolerances
codeoptions.nlp.TolStat = 1e-5 # inf norm tol. on stationarity
codeoptions.nlp.TolEq = 1e-6 # tol. on equality constraints
codeoptions.nlp.TolIneq = 1e-6 # tol. on inequality constraints
codeoptions.nlp.TolComp = 1e-6 # tol. on complementarity

All tolerances are computed using the infinitiy norm ‖·‖∞.
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15.2.3 Barrier strategy

The strategy for updating the barrier parameter is set using the field:

Matlab

Python

codeoptions.nlp.BarrStrat = 'loqo';

codeoptions.nlp.BarrStrat = 'loqo'

It can be set to 'loqo' (default) or to 'monotone'. The default settings often leads to faster
convergence, while 'monotone' may help convergence for difficult problems.

15.2.4 Hessian approximation

The way the Hessian of the Lagrangian function is computed can be set using the field:

Matlab

Python

codeoptions.nlp.hessian_approximation = 'bfgs';

codeoptions.nlp.hessian_approximation = 'bfgs'

FORCESPRO currently supports BFGS updates ('bfgs') (default) and Gauss-Newton approx-
imation ('gauss-newton'). Exact Hessians will be supported in a future version. Read the
subsequent sections for the corresponding Hessian approximation method of your choice.

BFGS options

When the Hessian is approximated using BFGS updates, the initialization of the estimates
can play a critical role in the convergence of the method. The default value is the identity
matrix, but the user can modify it using e.g.:

Matlab

Python

codeoptions.nlp.bfgs_init = diag([0.1, 10, 4]);

codeoptions.nlp.bfgs_init = np.diag(np.array([0.1, 10, 4]))

Note that BFGS updates are carried out individually per stage in the FORCESPRO NLP solver,
so the size of this matrix is the size of the stage variable. Also note that this matrix must be
positive definite. When the cost function is positive definite, it often helps to initialize BFGS
with the Hessian of the cost function.

This matrix is also used to restart the BFGS estimates whenever the BFGS updates are skipped
several times in a row. The maximum number of updates skipped before the approximation
is re-initialized is set using:

Matlab

Python

codeoptions.nlp.max_update_skip = 2;
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codeoptions.nlp.max_update_skip = 2

The default value for max_update_skip is 2.

In order to set the BFGS initialization through the bfgs_init codeoption one must first come
up with a guess for a good BFGS initialization. One way to do so is to first run the solver
without any user-defined BFGS initialization (i.e. not setting codeoptions.nlp.bfgs_init)
and using the BFGS matrix reached upon convergence as an inizialization. One can export
the BFGS matrix by setting

Matlab

Python

% diagonal of BFGS
codeoptions.exportBFGS = 1;
% lower triangular of BFGS
codeoptions.exportBFGS = 2;

# diagonal of BFGS
codeoptions.exportBFGS = 1
# lower triangular of BFGS
codeoptions.exportBFGS = 2

Istead of specifying the BFGS initialization at codegen one can also specify it at run-time. In
order to do this one should set

Matlab

Python

codeoptions.nlp.parametricBFGSinit = 1;

codeoptions.nlp.parametricBFGSinit = 1

before generating the FORCESPRO solver. Having done this, the generated solver will expect
an input problem.BFGSinitLower<stage number> for every stage. This is a vector which
specifies the BFGS hessian initialization in LOWER TRIANGULAR ROW MAJOR format. Thus,
in order to specify e.g. the matrix ⎛⎝𝑎1 0 0

0 𝑎2 0
0 0 𝑎3

⎞⎠
for constants 𝑎1, 𝑎2, 𝑎3 > 0 as the BFGS inizialization at stage 6 out of 50 stages in total, one
would specify

Matlab

Python

problem.BFGSinitLower06 = [a_1, 0, a_2, 0, 0, a_3];

problem["BFGSinitLower06"] = np.array([a_1, 0, a_2, 0, 0, a_3])

Gauss-Newton options

For problems that have a least squares objective, i.e. the cost function can be expressed by a
vector-valued function 𝑟𝑘 : R𝑛 → R𝑚 which implicitly defines the objective function as:

𝑓𝑘(𝑧𝑘, 𝑝𝑘) =
1

2
‖𝑟𝑘(𝑧𝑘, 𝑝𝑘)‖22 ,
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the Gauss-Newton approximation of the Hessian is given by:

∇2
𝑥𝑥𝐿𝑘 ≈ ∇𝑟𝑘(𝑧𝑘, 𝑝𝑘)∇𝑟𝑘(𝑧𝑘, 𝑝𝑘)⊤

and can lead to faster convergence and a more reliable method. When this option is selected,
the functions 𝑟𝑘 have to be provided by the user in the field LSobjective. For example if
𝑟(𝑧) =

√
100𝑧21 +

√
6𝑧22 , i.e. 𝑓(𝑧) = 50𝑧21 + 3𝑧22 , then the following code defines the least-squares

objective (note that 𝑟 is a vector-valued function):

Matlab

Python

model.objective = @(z) 0.1* z(1)^2 + 0.01*z(2)^2;
model.LSobjective = @(z) [sqrt(0.2)*z(1); sqrt(0.02)*z(2)];

# not yet implemented

Important: The field LSobjective will have precedence over objective, which need not be
defined in this case.

When providing your own function evaluations in C, you must populate the Hessian argu-
ment with a positive definite Hessian.

15.2.5 Line search settings

The line search first computes the maximum step that can be taken while maintaining the
iterates inside the feasible region (with respect to the inequality constraints). The maximum
distance is then scaled back using the following setting:

Matlab

Python

% default fraction-to-boundary scaling
codeoptions.nlp.ftbr_scaling = 0.9900;

# default fraction-to-boundary scaling
codeoptions.nlp.ftbr_scaling = 0.9900;

15.2.6 Regularization

To avoid ill-conditioned saddle point systems, FORCESPRO employs two different types of
regularization, static and dynamic regularization.

Static regularization

Static regularization of the augmented Hessian by 𝛿𝑤𝐼 , and of the multipliers corresponding
to the equality constraints by −𝛿𝑐𝐼 helps avoid problems with rank deficiency. The constants
𝛿𝑤 and 𝛿𝑐 vary at each iteration according to the following heuristic rule:

𝛿𝑤 = 𝜂𝑤 min(𝜇, ‖𝑐(𝑥)‖))𝛽𝑤 · (𝑖+ 1)−𝛾𝑤 + 𝛿𝑤,min

𝛿𝑐 = 𝜂𝑐 min(𝜇, ‖𝑐(𝑥)‖))𝛽𝑐 · (𝑖+ 1)−𝛾𝑐 + 𝛿𝑐,min

where 𝜇 is the barrier parameter and 𝑖 is the number of iterations.

330 Chapter 15. Solver Options



FORCESPRO User Manual

This rule has been chosen to accommodate two goals: First, make the regularization depen-
dent on the progress of the algorithm - the closer we are to the optimum, the smaller the
regularization should be in order not to affect the search directions generated close to the
solution, promoting superlinear convergence properties. Second, the amount of regulariza-
tion employed should decrease with the number of iterations to a certain minimum level, at
a certain sublinear rate, in order to prevent stalling due to too large regularization. FORCE-
SPRO NLP does not employ an inertia-correcting linear system solver, and so relies heavily on
the parameters of this regularization to be chosen carefully.

You can change these parameters by using the following settings:

Matlab

Python

% default static regularization parameters
codeoptions.nlp.reg_eta_dw = 1e-4;
codeoptions.nlp.reg_beta_dw = 0.8;
codeoptions.nlp.reg_min_dw = 1e-9;
codeoptions.nlp.reg_gamma_dw = 1.0/3.0;

codeoptions.nlp.reg_eta_dc = 1e-4;
codeoptions.nlp.reg_beta_dc = 0.8;
codeoptions.nlp.reg_min_dc = 1e-9;
codeoptions.nlp.reg_gamma_dc = 1.0/3.0;

# default static regularization parameters
codeoptions.nlp.reg_eta_dw = 1e-4
codeoptions.nlp.reg_beta_dw = 0.8
codeoptions.nlp.reg_min_dw = 1e-9
codeoptions.nlp.reg_gamma_dw = 1.0/3.0

codeoptions.nlp.reg_eta_dc = 1e-4
codeoptions.nlp.reg_beta_dc = 0.8
codeoptions.nlp.reg_min_dc = 1e-9
codeoptions.nlp.reg_gamma_dc = 1.0/3.0

Note that by choosing 𝛿𝑤 = 0 and 𝛿𝑐 = 0, you can turn off the progress and iteration dependent
regularization, and rely on a completely static regularization by 𝛿𝑤,min and 𝛿𝑐,min, respectively.

Dynamic regularization

Dynamic regularization regularizes the matrix on-the-fly to avoid instabilities due to numeri-
cal errors. During the factorization of the saddle point matrix, whenever it encounters a pivot
smaller than 𝜖, it is replaced by 𝛿. There are two parameter pairs: (𝜖, 𝛿) affects the augmented
Hessian and (𝜖2, 𝛿2) affects the search direction computation. You can set these parameters
by:

Matlab

Python

% default dynamic regularization parameters
codeoptions.regularize.epsilon = 1e-12; % (for Hessian approx.)
codeoptions.regularize.delta = 4e-6; % (for Hessian approx.)
codeoptions.regularize.epsilon2 = 1e-14; % (for Normal eqs.)
codeoptions.regularize.delta2 = 1e-14; % (for Normal eqs.)

# default dynamic regularization parameters
codeoptions.regularize.epsilon = 1e-12 # (for Hessian approx.)
codeoptions.regularize.delta = 4e-6 # (for Hessian approx.)

(continues on next page)
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(continued from previous page)

codeoptions.regularize.epsilon2 = 1e-14 # (for Normal eqs.)
codeoptions.regularize.delta2 = 1e-14 # (for Normal eqs.)

15.2.7 Linear system solver

The interior-point method solves a linear system to find a search direction at every iteration.
FORCESPRO NLP offers the following four linear solvers:

• 'normal_eqs' (default): Solving the KKT system in normal equations form.

• 'symm_indefinite': improved variant of 'symm_indefinite_legacy' introduced in
FORCESPRO version 5.0.0; roughly as efficient as normal_eqs but more robust.

• 'symm_indefinite_fast': Solving the KKT system in augmented / symmetric indefi-
nite form, using regularization and positive definite Cholesky factorizations only. This is
often the fastest solver but may be less numerical stable than symm_indefinite.

• 'symm_indefinite_legacy': Solving the KKT system in augmented / symmetric indef-
inite form; may be removed in a future release

The linear system solver can be selected by setting the following field:

Matlab

Python

codeoptions.nlp.linear_solver = 'symm_indefinite';

codeoptions.nlp.linear_solver = 'symm_indefinite'

It is recommended to try different linear solvers as the robustness and speed of the solvers are
problem-dependent. The overall most robust method is symm_indefinite, which is also very
efficient. For certain problems normal_eqs and 'symm_indefinite_fast' may be slightly
faster than symm_indefinite but possibly also slightly less numerically stable.

Note: Independent of the linear system solver choice, the generated code is always library-
free and statically allocated, i.e. it can be embedded anywhere.

Note: From FORCESPRO version 5.0.0 onwards, the option symm_indefinite refers to an
improved version; use symm_indefinite_legacy to restore the previous default.

The 'normal_eqs' solver is the standard FORCESPRO linear system solver based on a full
reduction of the KKT system (the so-called normal equations form). It works well for stan-
dard problems, especially convex problems or nonlinear problems where the BFGS or Gauss-
Newton approximations of the Hessian are numerically sufficiently well conditioned.

The 'symm_indefinite' solver is numerically more robust than 'normal_eqs' and
symm_indefinite_fast and typically similarly efficient. It is an improved variant of the
'symm_indefinite_legacy'. Furthermore, it implements iterative refinement which further
improves numerical stability (see Iterative refinement).

The 'symm_indefinite_fast' solver is typically the fastest solver. Currently only used for
receding-horizon/MPC-like problems where dimensions of all stages are equal (except for
the first and last stage, those are handled separately).

The 'symm_indefinite_legacy' solver is the most robust one, but currently replaced by an
at least equally robust improved variant.
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Iterative refinement

The linear solver 'symm_indefinite' supports iterative refinement to further improve nu-
merical stability. Iterative refinement is recommended for problems that don’t converge due
to numerical issues but can be safely disabled (default) for most problems. In order to en-
able iterative refinement, set codeoptions.nlp.refinement_steps to the desired number
of steps > 0. Two types of iterative refinement are implemented which can be selected by
setting codeoptions.nlp.refinement_type as outlined in Table 15.8.

Table 15.8: Options for setting iterative refinement type
nlp.refinement_type Description
0 Includes additional modification (default)
1 Strictly based on the original linear system

15.2.8 Automatic differentiation tool

If external functions and derivatives are not provided directly as C code by the user, FORCE-
SPRO makes use of an automatic differentiation (AD) tool to generate efficient C code for all
the functions (and their derivatives) inside the problem formulation. Currently, two different
AD tools (or four different AD tool versions) are supported that can be chosen by means of
the setting nlp.ad_tool as summarized in Table 15.9.

Table 15.9: Automatic differentiation tool options
nlp.ad_tool Tool URL
'casadi' CasADi (as in path or v3.5.5) CasADi
'casadi-2.4.2' CasADi v2.4.2 CasADi
'casadi-3.5.1' CasADi v3.5.1 CasADi
'casadi-3.5.5' CasADi v3.5.5 CasADi
'symbolic-math-tbx' MathWorks Symbolic Math Toolbox MathWorks

Note that MathWorks Symbolic Math Toolbox requires an additional license, which is why the
default option is set to

Matlab

Python

codeoptions.nlp.ad_tool = 'casadi';

codeoptions.nlp.ad_tool = 'casadi'

Also note that the use of implicit integrators BackwardEuler, IRK2 and IRK4 (see Section
15.2.1) currently still rely on using the CasADi AD tool.

15.2.9 Re-use of callback code

When defining your NLP problem formulation using an AD tool, you may specify objective
functions, dynamic equations and constraints separately on each stage. In order to reduce
the size of the generated callback code, FORCESPRO will perform a check whether all these
callbacks are identical on any two or more stages and if so, only generates the callback code
for those stages once. However, checking for exact identity can be tricky and may sometimes
lead to false results. By default, FORCESPRO performs a less strict check for identity result-
ing in less duplicated callback code. If you observe that two stages are wrongly identified as
identical, you can enable a more strict check by using the following codeoption:
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Matlab

Python

codeoptions.nlp.strictCheckDistinctStages = 1;

# not yet supported

Note that using this option may be overly conservative and lead to duplicated callback code
for different stages that are actually identical.

15.2.10 Safety checks

By default, the output of the function evaluations is checked for the presence of NaNs or INFs
in order to diagnose potential initialization problems. In order to speed up the solver one can
remove these checks by setting:

Matlab

Python

codeoptions.nlp.checkFunctions = 0;

codeoptions.nlp.checkFunctions = 0

15.3 Convex branch-and-bound options

The settings of the FORCESPRO mixed-integer branch-and-bound convex solver are ac-
cessed through the codeoptions.mip struct. It is worthwhile to explore different values for
the settings in Table 15.10, as they might have a severe impact on the performance of the
branch-and-bound procedure.

Note: All the options described below are currently not available with the FORCESPRO non-
linear solver. For mixed-integer nonlinear programs and the available options, please have a
look at paragraph Mixed-integer nonlinear solver.

Table 15.10: Branch-and-bound options
Setting Values Default
mip.timeout Any value ≥ 0 31536000 (1 year)
mip.mipgap Any value ≥ 0 0
mip.branchon 'mostAmbiguous', 'leastAmbiguous' 'mostAmbiguous'
mip.stageinorder 0 (OFF), 1 (ON) 1 (ON)
mip.explore 'bestFirst', 'depthFirst' 'bestFirst'
mip.inttol Any value > 0 1E-5
mip.queuesize Any integer value ≥ 0 1000

A description of each setting is given below:

• mip.timeout: Timeout in seconds, after which the search is stopped and the best solu-
tion found so far is returned.

• mip.mipgap: Relative sub-optimality after which the search shall be terminated. For
example, a value of 0.01 will search for a feasible solution that is at most 1%-suboptimal.
Set to zero if the optimal solution is required.
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• mip.branchon: Determines which variable to branch on after having solved the re-
laxed problem. Options are 'mostAmbiguous' (i.e. the variable closest to 0.5) or
'leastAmbiguous' (i.e. the variable closest to 0 or 1).

• mip.stageinorder: Stage-in-order heuristic: For the branching, determines whether to
fix variables in order of the stage number, i.e. first all variables of stage 𝑖 will be fixed be-
fore fixing any of the variables of stage 𝑖+ 1. This is often helpful in multistage problems,
where a timeout is expected to occur, and where it is important to fix the early stages
first (for example MPC problems). Options are 0 for OFF and 1 for ON.

• mip.explore: Determines the exploration strategy when selecting pending nodes. Op-
tions are 'bestFirst', which chooses the node with the lowest lower bound from all
pending nodes, or 'depthFirst', which prioritizes nodes with the most number of fixed
binaries first to quickly reach a node.

• mip.inttol: Integer tolerance for identifying binary solutions of relaxed problems. A so-
lution of a relaxed problem with variable values that are below inttol away from binary
will be declared to be binary.

• mip.queuesize: Maximum number of pending nodes that the branch and bound
solver can store. If that number is exceeded during the search, the solver quits with
an exitflag value of -2 and returns the best solution found so far.

15.4 Solve methods

As a default optimization method the primal-dual interior-point method is used. Several
other methods are available. To change the solve method set the solvemethod field as out-
lined in Table 15.11.
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Table 15.11: Solve methods
solvemethod Method Description
'PDIP_NLP' Nonlinear Primal-Dual Interior-Point method The Nonlinear Primal-

Dual Interior-Point
method is the most sta-
ble and robust method
for most nonlinear
problems.

'SQP_NLP' Sequential Quadratic Programming method The Sequential
Quadratic Program-
ming method may be
more efficient on mildly
nonlinear problems.

'PDIP' Primal-Dual Interior-Point method The Primal-Dual
Interior-Point method
is the most stable and
robust method for most
convex problems.

'ADMM' Alternating Direction Methods of Multipliers For some problems,
ADMM may be faster.
The method variant and
several algorithm pa-
rameters can be tuned
in order to improve
performance.

'DFG' Dual Fast Gradient method For some problems
with simple constraints,
our implementation
of the dual fast gra-
dient method can be
the fastest option. No
parameters need to be
tuned in this method.

'FG' Fast Gradient method For problems with no
equality constraints
(only one stage) and
simple constraints,
the primal fast gradi-
ent method can give
medium accuracy solu-
tions extremely quickly.
The method has several
tuning parameters that
can significantly affect
the performance.

15.4.1 Primal-Dual Interior-Point Method

The Primal-Dual Interior-Point method is the default optimization method for either nonlin-
ear/nonconvex or convex problems. It is a stable and robust method for most of the problems.
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Solver Initialization

The performance of the solver can be influenced by the way the variables are initialized. The
default method (cold start) should work in most cases extremely reliably, so there should
be no need in general to try other methods, unless you are experiencing problems with the
default initialization scheme. To change the method of initialization in FORCESPRO set the
field init to one of the values in Table 15.12.

Table 15.12: PDIP solver initialization
init Method Initialization method
0 (default) Cold start Set all primal variables to 0, and all dual variables to the

square root of the initial complementarity gap 𝜇0 : 𝑧𝑖 =
0, 𝑠𝑖 =

√
𝜇0, 𝜆𝑖 =

√
𝜇0. The default value is 𝜇0 = 106.

1 Centered start Set all primal variables to zero, the slacks to the RHS of
the corresponding inequality, and the Lagrange mul-
tipliers associated with the inequalities such that the
pairwise product between slacks and multipliers is
equal to the parameter 𝜇0 : 𝑧𝑖 = 0, 𝑠𝑖 = 𝑏ineq and 𝑠𝑖𝜆𝑖 = 𝜇0.

2 Primal warm start Set all primal variables as provided by the user. Calcu-
late the residuals and set the slacks to the residuals if
they are sufficiently positive (larger than 10−4), or to one
otherwise. Compute the associated Lagrange multipli-
ers such that 𝑠𝑖𝜆𝑖 = 𝜇0.

Initial Complementary Slackness

The default value for 𝜇0 is 106. To use a different value, use:

Matlab

Python

codeoptions.mu0 = 10;

codeoptions.mu0 = 10;

Accuracy Requirements

The accuracy for which FORCESPRO returns the OPTIMAL flag can be set as follows:

Matlab

Python

codeoptions.accuracy.ineq = 1e-6; % infinity norm of residual for inequalities
codeoptions.accuracy.eq = 1e-6; % infinity norm of residual for equalities
codeoptions.accuracy.mu = 1e-6; % absolute duality gap
codeoptions.accuracy.rdgap = 1e-4; % relative duality gap := (pobj-dobj)/pobj

codeoptions.accuracy.ineq = 1e-6 # infinity norm of residual for inequalities
codeoptions.accuracy.eq = 1e-6 # infinity norm of residual for equalities
codeoptions.accuracy.mu = 1e-6 # absolute duality gap
codeoptions.accuracy.rdgap = 1e-4 # relative duality gap := (pobj-dobj)/pobj
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Line Search Settings

If FORCESPRO experiences convergence difficulties, you can try selecting different line
search parameters. The first two parameters of codeoptions.linesearch, factor_aff and
factor_cc are the backtracking factors for the line search (if the current step length is in-
feasible, then it is reduced by multiplication with these factors) for the affine and combined
search direction, respectively.

Matlab

Python

codeoptions.linesearch.factor_aff = 0.9;
codeoptions.linesearch.factor_cc = 0.95;

codeoptions.linesearch.factor_aff = 0.9
codeoptions.linesearch.factor_cc = 0.95

The remaining two parameters of the field linesearch determine the minimum (minstep)
and maximum step size (maxstep). Choosing minstep too high will cause the generated
solver to quit with an exitcode saying that the line search has failed, i.e. no progress could
be made along the computed search direction. Choosing maxstep too close to 1 is likely to
cause numerical issues, but choosing it too conservatively (too low) is likely to increase the
number of iterations needed to solve a problem.

Matlab

Python

codeoptions.linesearch.minstep = 1e-8;
codeoptions.linesearch.maxstep = 0.995;

codeoptions.linesearch.minstep = 1e-8
codeoptions.linesearch.maxstep = 0.995

Regularization

During factorization of supposedly positive definite matrices, FORCESPRO applies a regular-
ization to the 𝑖-th pivot element if it is smaller than 𝜖. In this case, it is set to 𝛿, which is the
lower bound on the pivot element that FORCESPRO allows to occur.

Matlab

Python

codeoptions.regularize.epsilon = 1e-13; % if pivot element < epsilon ...
codeoptions.regularize.delta = 1e-8; % then set it to delta

codeoptions.regularize.epsilon = 1e-13 # if pivot element < epsilon ...
codeoptions.regularize.delta = 1e-8 # then set it to delta

Multicore parallelization

FORCESPRO supports the computation on multiple cores, which is particularly useful for
large problems and long horizons (the workload is split along the horizon to multiple cores).
This is implemented by the use of OpenMP and can be switched on by using

Matlab

Python
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codeoptions.parallel = 1;

codeoptions.parallel = 1

By default multicore computation is switched off.

When the parallel option is enabled with 1 (codeoptions.parallel = 1), the maximum
number of threads to be used is set as the maximum number of threads available to OpenMP
(max_number_of_threads). Additionally, a runtime parameter num_of_threads is created to
control the number of threads in runtime. The allowed range of values for the runtime pa-
rameter is [1, max_number_of_threads]. Leaving the parameter unset or setting a value
outside the allowed range will lead in execution with the maximum number of threads
(max_number_of_threads).

The maximum number of threads can also be set manually during code generation by set-
ting:

Matlab

Python

% <max_number_of_threads> larger than 1
codeoptions.parallel = <max_number_of_threads>;

# <max_number_of_threads> larger than 1
codeoptions.parallel = <max_number_of_threads>

15.4.2 Alternating Directions Method of Multipliers

FORCESPRO implements several optimization methods based on the ADMM framework. Dif-
ferent variants can handle different types of constraints and FORCESPRO will automatically
choose an ADMM variant that can handle the constraints in a given problem. To manually
choose a specific method in FORCESPRO, use the ADMMvariant field of codeoptions:

Matlab

Python

codeoptions.ADMMvariant = 1; % can be 1 or 2

codeoptions.ADMMvariant = 1 # can be 1 or 2

where variant 1 is as follows:

minimize
1

2
𝑦⊤𝐻𝑦 + 𝑓⊤𝑦

subject to 𝐷𝑦 = 𝑐

𝑧 ≤ 𝑧 ≤ 𝑧

𝑦 = 𝑧

and variant 2 is as follows:

minimize
1

2
𝑦⊤𝐻𝑦 + 𝑓⊤𝑦

subject to 𝐷𝑦 = 𝑐

𝐴𝑦 = 𝑧

𝑧 ≤ 𝑏
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Accuracy requirements

The accuracy for which FORCESPRO returns the OPTIMAL flag can be set as follows:

Matlab

Python

codeoptions.accuracy.consensus = 1e-3; % infinity norm of the consensus equality
codeoptions.accuracy.dres = 1e-3; % infinity norm of the dual residual

codeoptions.accuracy.consensus = 1e-3 # infinity norm of the consensus equality
codeoptions.accuracy.dres = 1e-3 # infinity norm of the dual residual

Note that, in contrast to primal-dual interior-point methods, the required number of ADMM
iterations varies very significantly depending on the requested accuracy. ADMM typically re-
quires few iterations to compute medium accuracy solutions, but many more iterations to
achive the same accuracy as interior-point methods. For feedback applications, medium ac-
curacy solutions are typically sufficient. Also note that the ADMM accuracy requirements have
to be changed depending on the problem scaling.

Method parameters

ADMM uses a regularization parameter 𝜌, which also acts as the step size in the gradient step.
The convergence speed of ADMM is highly variable in the parameter 𝜌. Its value should satisfy
𝜌 > 0. This parameter can be tuned using the following command:

Matlab

Python

codeoptions.ADMMrho = 1;

codeoptions.ADMMrho = 1

In some cases it may be possible to let FORCESPRO choose the value 𝜌 automatically. To
enable this feature set:

Matlab

Python

codeoptions.ADMMautorho = 1;

codeoptions.ADMMautorho = 1

Please note that this does not guarantee that the choice of 𝜌 will be optimal.

ADMM can also include an ‘over-relaxation’ step that can improve the convergence speed.
This step is typically useful for problems where ADMM exhibits very slow convergence and
can be tuned using the parameter 𝛼. Its value should satisfy 1 ≤ 𝛼 ≤ 2. This step using the
following command:

Matlab

Python

codeoptions.ADMMalpha = 1;

codeoptions.ADMMalpha = 1
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Precomputations

For problems with time-invariant data, FORCESPRO can compute full matrix inverses at code
generation time and then implement matrix solves online by dense matrix-vector multipli-
cation. In some cases, especially when the prediction horizon is long, it may be better to
factorize the matrix and implement matrix solves using forward and backward solves with
the pre-computed factors. To manually switch on this option, use the ADMMfactorize field of
codeoptions.

When the data is time-varying, or when the prediction horizon is larger than 15 steps, FORCE-
SPRO automatically switches to a factorization-based method.

Matlab

Python

codeoptions.ADMMfactorize = 0;

codeoptions.ADMMfactorize = 0

15.4.3 Dual Fast Gradient Method

For some problems with simple constraints, our implementation of the dual fast gradient
method can be the fastest option. No parameters need to be tuned in this method.

15.4.4 Primal Fast Gradient Method

For problems with no equality constraints (only one stage) and simple constraints, the primal
fast gradient method can give medium accuracy solutions extremely quickly. The method
has several tuning parameters that can significantly affect the performance.

Accuracy requirements

The accuracy for which FORCESPRO returns the OPTIMAL flag can be set as follows:

Matlab

Python

codeoptions.accuracy.gmap = 1e-5; % infinity norm of the gradient map

codeoptions.accuracy.gmap = 1e-5 # infinity norm of the gradient map

The gradient map is related to the difference with respect to the optimal objective value. Just
like with other first-order methods, the required number of FG iterations varies very signif-
icantly depending on the requested accuracy. Medium accuracy solutions can typically be
computed very quickly, but many iterations are needed to achieve the same accuracy as with
interior-point methods.

Method parameters

The user has to determine the step size in the fast gradient method. The convergence speed
of FG is highly variable in this parameter, which should typically be set to be one over the
maximum eigenvalue of the quadratic cost function. This parameter can be tuned using the
following command:
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Matlab

Python

codeoptions.FGstep = 1/1000;

codeoptions.FGstep = 1/1000

In some cases it may be possible to let FORCESPRO choose the step size automatically. To
enable this feature set:

Matlab

Python

codeoptions.FGautostep = 1;

codeoptions.FGautostep = 1

Warm starting

The performance of the fast gradient method can be greatly influenced by the way the vari-
ables are initialized. Unlike with interior-point methods, fast gradient methods can be very
efficiently warm started with a good guess for the optimal solution. To enable this feature set:

Matlab

Python

codeoptions.warmstart = 1;

codeoptions.warmstart = 1

When the user turns warm start on, a new parameter z_init_0 is automatically added. The
user should set it to be a good guess for the solution, which is typically available when solving
a sequence of problems.
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Chapter 16

Modelling Utilities

Like any derivative-based optimization solver, FORCESPRO works best if all functions defin-
ing the optimization problem are sufficiently smooth (i.e. at least continuously differentiable
once). Both the Matlab and the Python client of FORCESPRO come along with a couple of
utility functions to assist the user with setting up such smooth problem formulations. This
chapter provides details on those utility functions for modelling.

16.1 Interpolations (e.g. splines)

If a given function is based on measurement data (or any other set of discrete data points),
one can interpolate between those data points to yield a continuous function. FORCESPRO
can either create such a function directly from the data points or allows you to provide a
polynomial parameterization that can be used inside your symbolic problem formulation.

16.1.1 Polynomial Parameterization

A polynomial parameterization can be obtained by providing a vector containing M+1 break
points (defining M interpolaton intervals or pieces) as well as an array defining M sets of N+1
polynomial coefficients, each set defining a local polynomial of order N for each of those
pieces.

Calling the line

Matlab

Python

f = ForcesInterpolation(breaks, coefs);

f = forcespro.modelling.Interpolation(breaks, coefs)

will yield a symbolic representation of a polynomial in standard form

𝑓(𝑥) =

𝑁∑︁
𝑗=0

𝑐𝑖𝑗𝑥
𝑗 ∀ 𝑏𝑖−1 ≤ 𝑥 ≤ 𝑏𝑖 ∀ 𝑖 ∈ {1, . . . ,𝑀} ,

where b denotes the break points breaks and c denotes the coefficients coefs. f(x) can be
a scalar or a K-dimensional function, i.e. coefs may be given for a multi-valued interpola-
tion. For more details on how to pass those input parameters, we refer to the respective help
function as the format differs slightly between the Matlab and the Python client to follow
domain-specific conventions.
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In case your coefficients are defined relative to beginning of each piece, you can call

Matlab

Python

f = ForcesInterpolation(breaks, coefs, 'pp');

f = forcespro.modelling.Interpolation(breaks, coefs, 'pp')

to yield a symbolic representation of a polynomial in “piecewise polynomial” form

𝑓(𝑥) =

𝑁∑︁
𝑗=0

𝑐𝑖𝑗(𝑥− 𝑏𝑖)
𝑗 ∀ 𝑏𝑖−1 ≤ 𝑥 ≤ 𝑏𝑖 ∀ 𝑖 ∈ {1, . . . ,𝑀} .

Note: In addition to providing fixed numerical values for break points and coefficients, you
may also pass symbolic quantities for some or all of those! This will allow you to change the
parameterization of your interpolation on the fly, e.g. by means of real-time parameters that
are passed to the FORCESPRO solver.

The symbolic interpolation f can now be used inside your problem formulation by evaluating
it, either at a fixed value or at any symbolic quantity, e.g.

Matlab

Python

% assuming a state vector x and a control input u
y = f(x(1)) + u(1);

% assuming a state vector x and a control input u
y = f(x[0]) + u[0]

Important: Symbolic interpolations are currently only supported when using CasADi as AD
tool.

16.1.2 Automatic Fit from Data

In case you do not want to specify break points and coefficients yourself, you can fit data
points directly by calling:

Matlab

Python

f = ForcesInterpolationFit(X, Y, method);

f = forcespro.modelling.InterpolationFit(X, Y, kind)

Here, X and Y are vectors (say, of dimension L) of data points to yield an interpolation that
satisfies

𝑓(𝑋𝑖) = 𝑌𝑖 ∀ 𝑖 ∈ {1, . . . , 𝐿} .

The third argument method/kind specifies the method to be used to obtain that fit using
built-in functionality of either Matlab (see Table Table 16.1) or Python (see Table Table 16.2).
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The symbolic interpolation f can be used the same way as described in section Section 16.1.1.

Table 16.1: Interpolation Method for Matlab (see Matlab’s
interp1 for more details)

method Description
'linear' Piecewise linear
'nearest' Piecewise constant, value from nearest data point
'next' Piecewise constant, value from next data point
'previous' Piecewise constant, value from previous data point
'spline' (default) Piecewise cubic spline
'pchip' Shape-preserving piecewise cubic spline

Table 16.2: Interpolation Method for Python (see SciPy’s
interpolation class for more details)
kind Description
'cubic' (default) Piecewise cubic spline
'pchip' Shape-preserving piecewise cubic spline

16.1.3 Application Example

A full example on how to use interpolations inside your problem formulation
can be found in the examples folder that comes with your client. See the files
ObstacleAvoidance/ObstacleAvoidance_splines.m (MATLAB) and ObstacleAvoidance/
obstacle_avoidance_splines.py (Python), respectively. Therein, both road limits are
defined as splines and are enforced as inequality constraints.

16.2 Smooth Approximations

There are a number of useful basic functions that are not differentiable everywhere. For some
of them FORCESPRO provides a built-in smooth approximation and we plan to add more in
an upcoming release.

16.2.1 Smooth Minimum

The minimum value of two scalars is not differentiable at the points where both values are
identical. You can use the following smooth approximation instead:

Matlab

Python

c = ForcesMin(a, b);

c = forcespro.modelling.smooth_min(a, b)

This function accepts an optional third argument to trade-off smoothness and approximation
quality. The default value is set to 1e-8; higher values make the function smoother but less
accurate.
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16.2.2 Smooth Maximum

The maximum value of two scalars is not differentiable at the points where both values are
identical. You can use the following smooth approximation instead:

Matlab

Python

c = ForcesMax(a, b);

c = forcespro.modelling.smooth_max(a, b)

This function accepts an optional third argument to trade-off smoothness and approximation
quality. The default value is set to 1e-8; higher values make the function smoother but less
accurate.
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Chapter 17

Dumping Problem Formulation
and Data

17.1 Why to use the dump tool?

Along with its clients, FORCESPRO provides a tool that allows the user to dump the formula-
tion and actual data of an optimization problem. This information allows to exactly reproduce
the same solver for a given formulation and to feed it with exactly the same data to yield ex-
actly the same results (provided it is run on the very same target hardware). The problem
formulation and data is stored in “stand-alone” mat or json files, and the problem data can
also be saved in binary format. This means there is no need to keep copies of other files that
may be used to specify the formulation (such as the dynamic equations), except for formu-
lations relying on external callbacks provided as C code (see External function evaluations in
C).

The dump tool may be helpful for a couple of use cases such as:

• Debugging: a dumped problem allows you to re-run single solver calls without the need
to have your full simulation environment up and running.

• External support: you may send a dumped problem to whomever is in charge of pro-
viding support and it will enable that person to exactly reproduce your issue.

• Testing: keeping dumps of problems that performed as expected can be used to run
regression tests to ensure they work as expected after future changes.

Note that, depending on the dump type you choose (see How to use the dump tool?), the
dump tool either stores your problem formulation on a symbolic level or keeps a copy of the
C code generated by the automatic differentiation tool. Thus, keep the following in mind:

Important: A dumped problem will contain complete information about the solver that
you have setup. In particular, it may be used to reverse-engineer your problem formulation
(including dynamic model, objective function, constraints etc.). Thus, only share a dumped
problem with persons that have a right to obtain this information.

17.2 How to use the dump tool?

The dump tool currently provides three different dump types. Section Legacy dumps de-
scribes the so-called legacy dump that is available in the MATLAB client only and does not
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store the full symbolic formulation. Section Symbolic dumps describes the more recent sym-
bolic dump that is also available in the Python client, stores the full symbolic formulation, but
requires CasADi v3.5.x to work. In section Problem dumps from C, you learn how to dump
a problem struct (containing the runtime parameters) from C. This is useful when you work
on the embedded system and you don’t want to use the MATLAB and Python interface for
dumping.

17.2.1 Legacy dumps

Legacy dumps are available for the MATLAB client only and store a pre-processed problem
formulation including C code generated by the automatic differentiation tool. This variant is
somewhat less explicit and is supposed to work with all supported AD tools, and is therefore
still the default dump type if not specified otherwise by the user.

Creating a legacy dump of a problem consists of two steps:

1. Dumping the problem formulation: once a new solver has been generated, a
formulation struct, the codeoptions struct and optionally the outputs struct need
to be stored.

2. Dumping problem data: for each problem instance, the problemparams struct needs to
be stored. It is possible to store data of multiple problem instances for the same problem
formulation.

Dumping the problem formulation

For dumping the problem formulation, the following three steps need to be taken:

1. Enabling creation of a formulation dump: This is done by using the option

codeoptions.dump_formulation = 1;

2. Obtaining the dumped formulation: Calling FORCES_NLP with the before-mentioned
code option enabled will make it return a formulation struct as third output argument

[stages, codeoptions, formulation] = FORCES_NLP( model, codeoptions, outputs );

3. Storing the necessary structs into a file: After calling FORCES_NLP, you should use the
following function to store both the formulation and codeoptions struct

[tag, fullFilename] = ForcesDumpFormulation( formulation,codeoptions,outputs,
→˓label,dumpDirectory );

All but the first two arguments are optional. Pass outputs if your problem formulation con-
tains outputs. Moreover, you may pass an additional label used inside the filenames (or pass
an empty string) and dumpDirectory for storing the dumped formulation (the default is the
current working directory). The function ForcesDumpFormulation will create a mat file in the
specified directory containing the passed information. The filename is automatically chosen
and will contain the name of your solver, your label, a unique tag, a timestamp as well as
the suffix _F, e.g. myFORCESsolver_ABC3DEFGHIJ_20200101120000000_F.mat. The returned
fullFilename is a string consisting of the directory and the filename of the dump.

Note that this function returns a tag that is unique for a given formulation and code options.
It is strongly recommended to use it when dumping corresponding problem data.

Dumping problem data

Assuming your generated FORCESPRO solver is called myFORCESsolver and you are calling
it with the following command
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[output, exitflag, info] = myFORCESsolver( problem );

then dumping the problem data of any problem instance is as simple as calling

fullFilename = ForcesDumpProblem( problem,tag,dumpDirectory );

Here, you need to provide both the problem parameter struct as well as the unique tag
that has been generated when dumping the problem formulation. The third argument
dumpDirectory for storing the dumped problem data is optional (with the default be-
ing the current working directory). The function ForcesDumpProblem will create a mat file
in the specified directory containing the passed information. The filename is automati-
cally chosen and will contain the name of your solver, the unique tag (including any la-
bel passed when dumping the formulation), a timestamp as well as the suffix _P, e.g.
myFORCESsolver_ABC3DEFGHIJ_20200101120001000_P.mat. The returned fullFilename is
a string consisting of the directory and the filename of the dump.

There is no limit on the number of problem instances that you may dump that way.

Running a dumped problem

After you have dumped a problem formulation and at least one set of problem
data, you can use those mat files to exactly reproduce your solver and problem in-
stances. To do so, you need to perform the following two steps (where we assume you
have stored the two files myFORCESsolver_ABC3DEFGHIJ_20200101120000000_F.mat and
myFORCESsolver_ABC3DEFGHIJ_20200101120001000_P.mat at a location in your MATLAB
path):

1. Re-generate the FORCESPRO solver by loading the formulation mat file and using its
content to call the code generation:

F = load('myFORCESsolver_ABC3DEFGHIJ_20200101120000000_F.mat');
FORCES_NLP( F.formulation,F.codeoptions,F.outputs );

This will re-create the solver MEX function myFORCESsolver. Note that the third input
struct containing the outputs is only available if you included it into your dump.

2. Running the solver with dumped problem data by loading the data mat file and using
its content to call the generated solver:

P = load('myFORCESsolver_ABC3DEFGHIJ_20200101120001000_P.mat');
myFORCESsolver( P.problem );

You may repeat this step for as many problem instances as you have dumped.

Tip: To get the filenames of dumped problems and formulations in a directory, simply use
the function:

[formulationFilename, problemFilename] = ForcesFindDumpedProblems( tag,
→˓dumpDirectory );

Both arguments are optional. If tag is not given, the function returns any dumped file-
names regardless of their tag. The default dumpDirectory is the current working directory.
problemFilenames is a cell array of problem filenames.

Limitations of legacy dumps

Legacy dumps have the following limitations:
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• They are only available via the MATLAB client of FORCESPRO.

• They cannot be used if you pass external functions in form of C code.

These limitations can be overcome by using a symbolic dump.

17.2.2 Symbolic dumps

Symbolic dumps direcly store symbolic expressions of your problem formulation and codeop-
tions after converting both into the text-based JSON format. This variant thus reveals your
complete problem formulation to anybody with whom you share those JSON files! While
you should thus handle those symbolic dumps with care, they offer more flexibility than the
legacy dumps and are also available via the Python client of FORCESPRO.

Creating a symbolic dump of a problem consists of two steps:

1. Dumping the problem formulation: you need to store your model struct, the
codeoptions struct and optionally the outputs struct, which can be done even before
generating the actual solver code.

2. Dumping problem data: for each problem instance, the problemparams struct needs to
be stored. It is possible to store data of multiple problem instances for the same problem
formulation (in either a single file or multiple files).

Both steps may also be performed at once.

Dumping the problem formulation

For dumping the problem formulation in a symbolic way, just call the following function:

Matlab

Python

[tag, fullFilename] = ForcesDumpFormulation( model,codeoptions,outputs,...
label,dumpDirectory,ForcesDumpType.DumpSymbolics );

tag,full_filename = forcespro.dump.save_formulation(model, codeoptions,
→˓outputs=None,

label=None, path=None)

In MATLAB, the last argument enables the use of a symbolic dump. This parameter is not re-
quired in Python since there is only the symbolic way to dump problems so far. Pass outputs
if your problem formulation contains outputs. Moreover, you may pass an additional label
used inside the filenames (or pass an empty string) and dumpDirectory (keyword path in
Python) for storing the dumped file (the default is the current working directory). When call-
ing this way, the function ForcesDumpFormulation will create a json file in the specified di-
rectory containing the passed information. The filename is automatically chosen and will
contain the name of your solver, your label, a unique tag, a timestamp as well as the suffix
_F, e.g. myFORCESsolver_ABC3DEFGHIJ_20200101120000000_F.json. The returned string
fullFilename consists of the dump directory and the filename of the dump.

Note that this function returns a tag that is unique for a given formulation and code options.
It is strongly recommended to use it when dumping corresponding problem data. However,
the MATLAB and the Python client generate different tags for the same mathematical for-
mulation.
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Dumping problem data

Assuming your generated FORCESPRO solver is called myFORCESsolver and you are calling
it with the following command

Matlab

Python

[output, exitflag, info] = myFORCESsolver( problem );

output, exitflag, info = my_forces_solver.solve(problem);

then dumping the problem data of any problem instance is as simple as calling

Matlab

Python

fullFilename = ForcesDumpProblem( problems,tag,dumpDirectory,ForcesDumpType.
→˓DumpSymbolics );

full_filename = forcespro.dump.save_problem(problems, tag, dump_directory)

In MATLAB, the last argument enables the use of a symbolic dump. This parameter is not
required in Python since there is only the symbolic way to dump problems so far. You need
to provide either a single problem parameter struct (dictionary in Python) or an array (list
in Python) of problem parameter structs using problems. Besides, the unique tag that
has been generated when dumping the problem formulation is required. The third argu-
ment dumpDirectory for storing the dumped problem data is optional (with the default be-
ing the current working directory). The functions ForcesDumpProblem or forcespro.dump.
save_formulation will create a json file in the specified directory containing the passed
information. The filename is automatically chosen and will contain the name of your solver,
the unique tag (including any label passed when dumping the formulation), a timestamp as
well as the suffix _P, e.g. myFORCESsolver_ABC3DEFGHIJ_20200101120001000_P.json. The
returned string fullFilename consists of the dump directory and the filename of the dump.

There is no limit on the number of problem instances that you may dump that way.

Dumping the problem formulation and data at once

For dumping both the problem formulation and all problem data at once in a symbolic way,
just call the following function:

Matlab

Python

[tag, fullFilename] = ForcesDumpAll( model,codeoptions,outputs,...
label,dumpDirectory,problems,ForcesDumpType.DumpSymbolics );

tag, full_filename = forcespro.dump.save_all(model, codeoptions, outputs, \
label, dump_directory, problems)

In MATLAB, the last argument enables the use of a symbolic dump. This parameter is not
required in Python since there is only the symbolic way to dump problems so far. You need
to provide the model and the codeoptions containing your formulation. Pass outputs if your
problem formulation contains outputs. Moreover, you may pass an additional label used
inside the filenames (or pass an empty string) and dumpDirectory for storing the dumped
file (the default is the current working directory). Furthermore, problems may be either a
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single set of problem data or a cell array (list in Python) of many problem data sets that you
want to dump along with the problem formulation.

When calling this way, the function ForcesDumpAll will create a json file in the specified
directory containing the passed information. The filename is automatically chosen and will
contain the name of your solver, your label, a unique tag, a timestamp as well as the suffix
_A, e.g. myFORCESsolver_ABC3DEFGHIJ_20200101120000000_A.json. The returned string
fullFilename consists of the dump directory and the filename of the dump.

Note that this function returns a tag that is unique for a given formulation and codeoptions
and that you may want to record. However, the MATLAB and the Python client generate
different tags for the same mathematical formulation.

Running a dumped problem

After you have dumped a problem formulation and at least one set of problem data, you
can use either a matching pair of _F/_P files or any single _A file in JSON format to exactly
reproduce your solver and problem instances. To do so, you need to perform the following
two steps:

1. Load problem formulation and data from JSON file or files calling:

Matlab

Python

[model, codeoptions, outputs, additionalData, problems] = ...
ForcesLoadSymbolicDump( formulationFilename,

→˓problemFilenames );

model, options, outputs, additional, problems = \
forcespro.dump.load(formulation_filename, problem_filename)

problemFilenames may either be a single file name or a cell array (list in Python)
containing all the problem data set that you want to load. In case you have dumped
both formulation and problem data set(s) at once within a single file, just pass
that one as formulationFilename and do not specify problemFilenames. The re-
turned problems variable is an array (list in Python) containing all problem sets
found in the dumps.

2. Re-generating and running the solver with dumped information by simply calling:

Matlab

Python

FORCES_NLP( model,codeoptions,outputs );
myFORCESsolver( problems(1) );
% and more problem instances if present

solver = model.generate_solver(codeoptions, outputs)
result, exitflag, info = my_forces_solver.solve(problems[1])
# and more problem instances if present

Tip: To get the filenames of dumped problems and formulations in a directory, simply use
the function:

Matlab

Python
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[formulationFilename, problemFilename] = ForcesFindDumpedProblems( tag,
→˓dumpDirectory );

formulation_filename, problem_filenames = forcespro.dump.find_problems(tag, dump_
→˓directory)

Both arguments are optional. If tag is not given, the function returns any dumped file-
names regardless of their tag. The default dumpDirectory is the current working directory.
problemFilenames is a cell array (list in Python) of problem filenames.

Limitations of symbolic dumps

Symbolic dumps only work with CasADi v3.5.x for reasons beyond our control, which is why
we currently do not plan to extend support to CasADi v2.4.2 or MathWorks’ Symbolic Math
Toolbox.

17.2.3 Problem dumps from C

Problem dumps from C consider only the params struct containing the runtime parameters
that are passed to the solver in each solver call. In order to save or load params structs, you
can call the dump tool from any C script. This offers the opportunity to work directly on the
embedded system. The data is stored in binary format. The problem dumps from C use the
msgpack-c library.

Important: The problem dumps from C require dynamic memory allocation. This is be-
cause of the dependency on the msgpack-c library. Please check if your embedded platform
supports dynamic memory allocation.

Before dumping problems from C for the first time, you need to install msgpack as described
in Download and install msgpack for C. Then, the dumping procedure consists of the follow-
ing three steps:

1. Enabling the generation of the dump functions: When generating your solver, you need
to set a codeoption in order to enable the generation of the dump functions.

2. Dumping problem data: Call the generated serialize function in order to dump aparams
struct. Exactly one params struct can be stored at a time.

3. Loading problem data: Call the generated deserialize function in order to load a params
struct. Exactly one params struct can be stored at a time.

Download and install msgpack for C

Since the dump tool for problems from C requires msgpack, make sure you installed the
library. You can either clone the github repository or you can simply download msgpack as a
zip file. For the installation of the library, you need gcc >= 4.1.0 and cmake >= 2.8.1.

How to install:

• Windows:

1. Run cmake . in your terminal from the msgpack-c-c_master folder.

2. Open the generated msgpack.sln file (located in the same folder) in Visual Studio
and click Build. The generated library is located in msgpack-c-c_master/Debug.
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• Other platforms:

1. Run cmake . in your terminal from the msgpack-c-c_master folder.

2. Run make. The generated library is located in msgpack-c-c_master.

For more information about the installation of msgpack, see the README.md on github.

Enable the Generation of the Dump Functions

Before generating your solver you need to enable the generation of the dump functions. You
can specify whether you want to dump from your host platform or/and from your target plat-
form. For dumping from the host platform set:

Matlab

Python

codeoptions.serializeCParamsHost = 1;

codeoptions.serializeCParamsHost = 1

and for dumping from your specified target platform set:

Matlab

Python

codeoptions.serializeCParamsTarget = 1;

codeoptions.serializeCParamsTarget = 1

Dumping Problem Data

This section explains how to write and run a C script that dumps your problem data based
on the high-level basic example (see High-level interface: Basic example). We assume your
C script is in the same folder as your generated solver.

You can find the code of this example script to try it out for yourself in the examples folder
that comes with your client.

1. Include your solver header called <solvername>.h. In the solver header, the
<solvername>_params struct and the dumping routines <solvername>_serialize
and <solvername>_deserialize are defined. Note that the params struct for binary
problems is called <solvername>_binaryparams and for mixed integer problems it is
<solvername>_integerparams.

#include "FORCESNLPsolver/include/FORCESNLPsolver.h"

2. Create a params struct and fill it with your data:

/* create params struct */
FORCESNLPsolver_params params;

/* fill params struct with data */
params.xinit[0] = -4.;
params.xinit[1] = 2.;
for (int i = 0; i < 33; i++)
{

params.x0[i] = 0.0;
}
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3. Choose a filename for the dump and call the serialization routine:

const char filename[] = "dump.msgpack";
int successSerialize = FORCESNLPsolver_serialize(&params, filename);

4. Compile your script:

$ <Compiler_exec> my_C_dump_script.c <compiled_solver> -L<msgpack_lib_
→˓path> -l<msgpack_lib> <additional_libs>

Where:

• <Compiler_exec> is your compiler (for example gcc)

• my_C_dump_script.c is your script that calls the serialize function (for ex-
ample serializationCParams_HighLevel_BasicExample.c)

• <compiled_solver> is your compiled solver library (static or shared):

– For Linux/MacOS/MinGW it is libFORCESNLPsolver.a or
libFORCESNLPsolver.so in the lib or lib_target directory

– For Windows it is FORCESNLPsolver_static.lib or FORCESNLPsolver.
lib in the lib or lib_target directory

• <msgpack_lib_path> specifies your path to the compiled msgpack library

– For Linux/MacOS/MinGW it is the path to your msgpack-c-c_master folder

– For Windows it is the path to your msgpack-c-c_master/Debug folder

• <msgpack_lib> specifies the name of the compiled msgpack library

– For the static library on Windows set it to msgpackc_import

– Otherwise, it is msgpackc

• <additional_libs> are possible libraries that need to be linked to resolve ex-
isting dependencies.

– For Linux/MacOS it’s usually necessary to link the math library (-lm)

– For Windows you usually need to link the iphlpapi.lib library (it’s dis-
tributed with the Intel Compiler, MinGW as well as Matlab) and some-
times some additional intel libraries (those are included in the FORCE-
SPRO client under the folder libs_Intel – if missing they are downloaded
after code generation)

The following shows how to compile the dump example script on Linux:

$ gcc serializationCParams_HighLevel_BasicExample.c FORCESNLPsolver/lib/
→˓libFORCESNLPsolver.so -L/path/to/msgpack-c -lmsgpackc -lm

Loading Problem Data

This section explains how to write and run a C script that loads a dumped C params struct
based on the high-level basic example (see High-level interface: Basic example). We assume
your C script is in the same folder as your generated solver.

You can find the code of this example script to try it out for yourself in the examples folder
that comes with your client.

1. Include your solver header called <solvername>.h.

#include "FORCESNLPsolver/include/FORCESNLPsolver.h"
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2. Create an empty params struct:

FORCESNLPsolver_params dumped_params;

3. Call the deserialization routine and pass the filename you chose when dumping the
problem data:

int successDeserialize = FORCESNLPsolver_deserialize(&dumped_params,
→˓filename);

4. Compile your script:

$ <Compiler_exec> my_C_dump_script.c <compiled_solver> -L<msgpack_lib_
→˓path> -l<msgpack_lib> <additional_libs>

Where:

• <Compiler_exec> is your compiler (for example gcc)

• my_C_dump_script.c is your script that calls the deserialize function (for
example serializationCParams_HighLevel_BasicExample.c)

• <compiled_solver> is your compiled solver library (static or shared):

– For Linux/MacOS/MinGW it is libFORCESNLPsolver.a or
libFORCESNLPsolver.so in the lib or lib_target directory

– For Windows it is FORCESNLPsolver_static.lib or FORCESNLPsolver.
lib in the lib or lib_target directory

• <msgpack_lib_path> specifies your path to the compiled msgpack library

– For Linux/MacOS/MinGW it is the path to your msgpack-c-c_master folder

– For Windows it is the path to your msgpack-c-c_master/Debug folder

• <msgpack_lib> specifies the name of the compiled msgpack library

– For the static library on Windows set it to msgpackc_import

– Otherwise, it is msgpackc

• <additional_libs> are possible libraries that need to be linked to resolve ex-
isting dependencies.

– For Linux/MacOS it’s usually necessary to link the math library (-lm)

– For Windows you usually need to link the iphlpapi.lib library (it’s dis-
tributed with the Intel Compiler, MinGW as well as Matlab) and some-
times some additional intel libraries (those are included in the FORCE-
SPRO client under the folder libs_Intel – if missing they are downloaded
after code generation)

The following shows how to compile the dump example script on Linux:

$ gcc serializationCParams_HighLevel_BasicExample.c FORCESNLPsolver/lib/
→˓libFORCESNLPsolver.so -L/path/to/msgpack-c -lmsgpackc -lm
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Chapter 18

Frequently asked questions

18.1 Quick links

Features of FORCESPRO

Issues during code generation

Issues when running the solver

Simulink interface

Code deployment

Other topics

18.2 Features of FORCESPRO

• I have been using FORCES in the past. Why should I use FORCESPRO?

The development of the free version of FORCES by ETH (forces.ethz.ch) has been discontin-
ued, and the code generation service is no longer available.

The professional version of FORCESPRO comes with professional support, additional inter-
faces, and a large performance increase.

• Can FORCESPRO target dSpace hardware?

Yes, FORCESPRO can be seamlessly integrated in the dSpace design flow with
the new Simulink interface. For more details see sec_dspace_microautoboxii and
sec_dspace_microautoboxiii.

• Can I use FORCESPRO for non-multistage programs?

Yes, FORCESPRO supports the case 𝑁 = 1, i.e. a general QCQP of the form

minimize
1

2
𝑧⊤𝐻𝑧 + 𝑓⊤𝑧

subject to 𝐷𝑧 = 𝑐

𝑧 ≤ 𝑧 ≤ 𝑧

𝐴𝑧 ≤ 𝑏

𝑧⊤𝑄𝑧 + 𝑞⊤𝑧 ≤ 𝑟

In order to use this feature, simply call stages=MultistageProblem(1) and fill in the matrices
as described in Low-level interface.
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• I need to re-linearize the model of my plant each sampling time. Does FORCESPRO
support this?

When re-linearizing non-linear dynamics, you obtain in each sampling time a different matrix
𝐴, 𝐵 and also a new affine part 𝑔:

𝑥𝑘+1 = 𝐴𝑥𝑘 +𝐵𝑢𝑘 + 𝑔

FORCESPRO supports changing these variables at run-time by defining them as parameters.

• I don’t have a state-space model of my system. Can I still use FORCESPRO to design
an optimal controller?

Yes, the graphical interface allows one to design optimal controllers for models described by a
Simulink diagram - there is no need for equations. If you have a model in another form, please
send us a feature request and we will try to support your model type as soon as possible.

18.3 Issues during code generation

• I get the following error message when generating code: ‘Error downloading URL.
Your network connection may be down or your proxy settings improperly config-
ured.‘

Your current MATLAB configuration is not accepting our website’s SSL certificate. Please fol-
low this link to add our certificate to Matlab’s list of certificates manually. You can download
the embotech certificate using your browser.

• I get the following error message when generating code: ‘Invalid MEX-file. The
specified module could not be found.‘

Please install the Visual Studio redistributable libraries from here.

• I get the following error when generating code: ‘java.io.IOException: Server is not
responding, it might not support the current protocol. Missing ServerHello.‘

Some MATLAB versions and some Java installations give problems when communicating
using HTTPS from MATLAB. Please edit the file callSoapService.m. Search for the line

url = URL(endpoint);

and replace it with

url = URL([], endpoint, sun.net.www.protocol.https.Handler)

• I get the following error when generating code: ‘java.io.IOException: The issuer can
not be found in the trusted CA list.‘

Some MATLAB versions and some Java installations give problems when communicating
using HTTPS from MATLAB. Please edit the file callSoapService.m. Search for the line

url = URL(endpoint);

and replace it with

url = URL([], endpoint, sun.net.www.protocol.https.Handler)

• I get the following error when generating code: ‘javax.net.ssl.SSLException: Unrec-
ognized SSL message, plaintext connection?‘

If you are using the enterprise version of FORCESPRO (separate server in your company net-
work), had previously altered the file callSoapService.m to accept secure HTTP connections
and the enterprise server is listening on an HTTP port, you receive this error. To fix: Please edit
the file callSoapService.m. Search for the line
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url = URL([], endpoint, sun.net.www.protocol.https.Handler)

and replace it by the default

url = URL(endpoint);

• I get the following error when generating code:

Server was unable to process request. ---> There is no parameter that maps to c of
→˓stage 1

However, according to the multistage formulation, my 𝐷1 is empty in my problem, so 𝑐1
should also be empty.**

We recommend to reformulate the optimization variables for each stage so that 𝐷1 is not
empty for performance reasons.

If this is not possible and 𝐷1 must remain empty, then the inter-stage equality constraint
equations become

𝐶𝑖−1𝑧𝑖−1 +𝐷𝑖𝑧𝑖 = 𝑐𝑖−1

instead of

𝐶𝑖−1𝑧𝑖−1 +𝐷𝑖𝑧𝑖 = 𝑐𝑖

• I get the following error message when using the MATLAB interface: ‘’Unable to
cast object of type ‘csmatio.types.MLDouble’ to type ‘csmatio.types.MLStructure’.’‘

Please check that you have your MEX compiler correctly set up. If the problem persists please
send your MATLAB and platform settings to support@embotech.com.

• I get the following error message when using the Python interface: ‘csma-
tio.io.MatlabIOException: Incorrect Matlab array class: int32‘

Make sure that the parametric data is passed to the solver as numpy arrays of floating point
numbers, i.e. instead of

problem['Q'] = np.array([1 1])

use

problem['Q'] = np.array([1.0 1.0])

• The code generation process gets stuck displaying ‘Generating and compiling
code. . . ‘ and sometimes it returns an error after 10 minutes.

By default, the code is compiled will all optimizations turned on (-O3). When the size of your
code is large, typically when you have a long prediction horizon, it can take a very long time
to compile the code with all optimizations turned on. If this process takes too long the server
times out and returns a compilation error. You can reduce the compilation time by changing
the compiler optimization flags to -O0, -O1, or -O2. You can change this setting using the
following flag set to the appropriate value.

codeoptions.optlevel = 2;

18.4 Issues when running the solver

• When I run the solver in MATLAB I get the following error: ‘??? Error using ==>
TestSolver freopen of stdout did not work.‘
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This is a printing error that occurs in some old versions of MATLAB because stdout is not
defined inside MEX files. Supported versions of MATLAB should not produce this error. You
can avoid this error by setting

codeoptions.printlevel = 0;

• My solver is producing a segmentation fault.

When the solver has a large amount of parameters or the problem is relatively large, compil-
ing with codeoptions.optlevel = 0; can produce a segmentation fault. Please try to increase
the value of codeoptions.optlevel or submit a bug report to support@embotech.com.

• ADMM does not converge for my problem.

Unlike interior-point methods, the convergence of ADMM depends on the problem scaling.
If the matrices for the problem data have very high condition numbers and norms, ADMM
can converge extremely slowly regardless of the algorithm parameters. In some cases, ADMM
might not converge at all due to severe accumulation of numerical errors.

However, often the problem is choosing the right ADMM parameters 𝜌 and 𝛼 to obtain fast
convergence of the algorithm.

• The solver outputs exitcode -7.

Exitcode -7 means that the solver could not proceed. A common cause is the problem being
infeasible. FORCESPRO does not have infeasibility detection to speed up the solution time.
However, one can use the function stages2qcqp to convert the FORCESPRO problem into a
standard (QC)QP that can be given to standard QP solvers like quadprog, MOSEK or CPLEX
to check for infeasibility.

• I am generating code from 32-bit MATLAB. When I run the code it produces a seg-
fault. What is the problem?

By default, the code is compiled will all optimizations turned on (-O3). We have observed that
sometimes there are problems when linking on 32-bit versions of MATLAB. This problem does
not occur when the compiler optimization flags are set to -O0, -O1, or -O2. You can change
this setting using the following flag set to the appropriate value.

codeoptions.optlevel = 2;

18.5 Simulink interface

• When I have a long prediction horizon I have too many input and output ports that
I need to wire up in my Simulink interface. When I change my prediction horizon I
need to re-wire them all again and this is a pain.

The new version of FORCESPRO provides a ‘compact’ version of all Simulink interfaces that
can be called with stacked parameters and has a small and constant number of input ports
independent of the prediction horizon.

To check the dimensions of the new stacked parameters click on the ‘Help’ button in the
dialogue of the ‘compact’ Simulink block.

18.6 Code deployment

• I get the following error message when deploying a solver on dSpace hardware:
‘OPUS MAKE: Don’t know how to make . . . ‘

This is well-known deployment issue with compiled files. During building for target the
compiler is looking for the source code of the solver. The resulting object file is added in
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the folder <solvername>_<target_ext> which is automatically generated by the com-
piler. Therefore, to use the object file you need to move it to that folder in order for the
compiler to detect it and skip compilation. A possible workaround is to use the static
library of the solver as specified in sec_dspace_microautoboxii.

18.7 Other topics

• How can I obtain information about the KKT conditions at the solution?

The printlevel solver option allows the user to control how much information is printed
by the solver. See here for more information on how to define solver options.

When printlevel is set to 2 the solver outputs information related to the KKT conditions
at every iteration. In particular:

– res_eq is the maximum ||𝐶𝑖−1𝑧𝑖−1 +𝐷𝑖𝑧𝑖 − 𝑐𝑖||∞ for all 𝑖,

– If we rewrite all inequality constraints as𝐺𝑧 ≤ 𝑔 and 𝑠 are slack variables for the same
constraints, res_ineq is equal to ||𝐺𝑧 − 𝑔 + 𝑠||∞,

– If 𝜆 are the Lagrange multipliers for the inequality constraints, 𝜇 is equal to 𝜆⊤𝑠 di-
vided by the number of constraints, i.e. the average complementary slackness.

• What system information am I sharing by using FORCESPRO?

When contacting the solver generation server, the FORCESPRO client sends the follow-
ing system information:

– Machine username

– MAC address

– Fingerprints

The fingerprint is platform dependent. We create two fingerprints using different sys-
tem information to create hashes and validate with either of them in order to have a
more stable validation:

– For Windows, each fingerprint uses a subset of the below information:

* Mac addresses

* CPU ID (register with machine support)

* Volume Serial Number

* Volume GUID

– For MacOS, each fingerprint uses a subset of the below information:

* Cputype and Cpusubtype

* Network node hostname

* Mac addresses

– For Linux, each fingerprint uses a subset of the below information:

* Network node hostname

* /etc/machine-id

* Mac addresses

* Linux user uid

The above information is hashed to create the fingerprint which means that it cannot
be recovered by using the fingerprint.
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• Why am I being asked to update the FORCESPRO client software every now and
then?

We have a development policy of continuous deployment, which unfortunately means
that we have to ask users to update their clients every time there is a substantial change
in the code. To make this process easier and faster, FORCESPRO comes with a func-
tionality that allows users to update their clients by simply typing the following in the
MATLAB command prompt:

>> updateClient
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